

St. JOSEPH'S COLLEGE OF ENGINEERING (An Autonomous Institution) St. Joseph's Group of Institutions Jeppiaar Educational Trust OMR, Chennai - 119.

You Choose, We Do It

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE REGULATION – 2021 CHOICE BASED CREDIT SYSTEM I - VIII SEMESTERS CURRICULA AND SYLLABI

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Graduates to exploit the knowledge of basic science, mathematics, statistics, and data science to build systems that require management and analysis of large volumes of real time data.
- **PEO2:** To enrich the graduates with technical and professional skills to apply the concept of Artificial Intelligence to develop elegant solutions for the complex problems in various domains.
- **PEO3:** To enable the graduates to think logically, pursue lifelong learning, and pioneering research in the field of Artificial Intelligence and Data Science to create disruptive and sustainable solutions for the real world issues.
- **PEO4:** To inculcate ethical attitude, social responsibilities, and soft skills to work as a team to solve social, business and environmental problems.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** Understand, Analyze, evolve and develop AI based efficient domain specific processes for effective decision making in several domains such as business, IT and governance.
- **PSO2:** Able to arrive at actionable foresight, insight, hindsight from data for solving business and engineering problems by applying mathematical, statistical and computational principles
- **PSO3:** Create, select and apply the theoretical knowledge of AI and Data Analytics along with practical industrial tools and techniques to manage and solve societal problems.

MAPPING OF PROGRAM OUTCOMES (POs) WITH

PROGRAM EDUCATIONAL OBJECTIVES (PEOs) & PROGRAM SPECIFIC OUTCOMES (PSOs)

PROGRAM OUTCOMES (POs)	PROC OI	GRAM E	DUCATIO ES (PEC	ONAL Ds)	PROG OUTC	RAM SP OMES (I	ECIFIC PSOs)
	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
PO1: Engineering knowledge	3	3	2	1	3	3	3
PO2: Problem analysis	2	2	2	1	3	3	3
PO3: Design/development of solutions	3	3	2	1	3	3	3
PO4: Conduct investigations of complex problems	3	3	3	1	3	3	3
PO5: Modern tool usage	2	3	2	1	2	3	3
PO6: The engineer and society	2	2	1	2	2	2	3
PO7: Environment and sustainability	2	2	2	3	2	2	3
PO8: Ethics	2	2	3	1	2	2	3
PO9: Individual and team work	2	3	3	3	2	2	2
PO10: Communication	2	2	3	2	2	2	2
PO11: Project management and finance	2	3	3	1	1	2	3
PO12: Life-long learning	3	3	3	2	2	2	2

MAPPING OF PSOs TO PEOs

	PROGI	RAM EDUCATION		6 (PEOs)
	PEO1	PEO2	PEO3	PEO4
PSO1	2	2	3	2
PSO2	2	3	3	1
PSO3	3	3	3	2

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES (POs)

				PR	ROG	RAN	ΙΟυ	тсс	ME	S (P	Os)			F	SOs	5
SEM	COURSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Communicative English								1	1	1		~	1	1	1
	Engineering Mathematics - I	1	1	1						1				>	1	~
	Engineering Physics	1	1	~										>	✓	>
	Engineering Chemistry	1	1	1										>	1	>
I	Problem Solving and Python Programming	~	~	1										1	1	~
	Engineering Graphics	1	1	1		1			1	1	1		1	1	1	1
	Python Programming Laboratory	1	1	1		1			>	1	1		>	>	✓	>
	Physics and Chemistry Laboratory	~	~	1					>	1	1			>	1	>
	Professional English								>	1	1		~	>	✓	>
	Linear Algebra	1	1	1						1				>	✓	>
	Physics for Information Science	1	1	1										~	1	~
	Environmental Science and Engineering	~	~	1				1	~	1	1		~	~	~	~
	Basic Electrical, Electronics and Measurement Engineering	~	~	1										>	1	>
	Programming in C	1	1	1		1			~	1	1		✓	~	✓	~
	Engineering Practice Laboratory	~	~	~	✓	~	1		✓	~	1		✓	1	1	✓
	Programming in C Laboratory	1	1	1		1			1	1	1		1	1	✓	~

				Pf	१OG	RAM	OU	тсо	MES	6 (PC)s)			Г	PSO	5
SEM	COURSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Probability and Statistics	~	1	~	1					1	1		~	1	1	~
	Computer Organization and Architecture	~	~	~		~								1	~	1
	Data Structures	1	1	1										1	1	~
	Object Oriented Programming (Lab Integrated)	~	~	~		~			1	1	1		~	1	1	~
	Introduction to Artificial Intelligence	~	1	~	1	~								1	~	1
	Foundations of Data Science	1	1	1		1							1	1	1	~
	Data Structures Laboratory using Python	1	1	1					1	1	1		1	1	1	1
	Artificial Intelligence Laboratory	1	1	~	1	1			1	1	1		1	1	1	1
	Discrete Mathematics	1	1	1	1					1		[1	1	1	1
	Design and Analysis of Algorithms	~	1	~	~	1				1	~		1	1	1	1
	Operating Systems	 ✓ 	~	1		~								1	~	1
	Database Design and Management (Lab Integrated)	~	~	~		~			1	1	~		~	~	~	~
IV	Foundations of Machine Learning	1	1	~		1							1	1	1	1
	Python Programming for Data Science	1	1	~		1							1	1	1	1
	Data Science Laboratory using Python	1	1	1					~	1	1		1	1	1	1
	Machine Learning Laboratory	1	1	~		~			1	1	1		~	1	~	~
	Professional Skills Laboratory								~	1	1		1	1	~	1

,																
				Pf	२OG	RAN	I OU	тсо	MES	ን (PC)s)			F	PSO	5
SEM	COURSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Optimization in Data Analysis	1	1	1		1								~	~	1
	Advanced Artificial Intelligence	~	~	~		~							~	~	~	~
	Data Mining	 Image: A start of the start of	 ✓ 	 Image: A start of the start of		 Image: A start of the start of								 Image: A start of the start of	✓	 Image: A start of the start of
V	Exploratory Data Analysis	1	1	 Image: A start of the start of	1	1							 	1	1	1
	Data Preparation and Analysis Laboratory	1	1	1	1	1			1	1	1		1	1	1	1
	Advanced Artificial Intelligence Laboratory	1	 Image: A start of the start of	 Image: A start of the start of	1	 Image: A start of the start of			1	 Image: A start of the start of	1		 Image: A start of the start of	1	1	1
	Modern Scripting Languages	~	1	~		1							~	1	1	~
	Computational Linguistics	~	~	~		~							~	~	1	~
	Data Visualization	1	1	~		~							~	~	~	~
VI	Data Analytics	1	~	~	1	1			1	~	1		~	1	1	1
	Data Visualization Laboratory	1	1	~	~	~			~	1	~		~	~	1	1
	Mini Project - I	1	1	~	1	~	~	1	1	1	~	1	~	~	1	1
	Neuro-Fuzzy Computing	1	1	~		~							~	~	~	~
	Text Analytics	1	~	~		1							~	1	1	1
	Computer Vision	~	~	~										~	~	1
VII	Big Data Management	1	~	~										1	1	1
	Neuro-Fuzzy Computing Laboratory	~	~	~	~	~			~	~	~		1	~	~	~
	Mini Project - II	~	1	1	~	~	~	1	~	~	1	1	1	~	~	1
VIII	Project Work	~	~	~	~	1	1	~	~	~	~	1	~	1	1	~

MAPPING OF PROFESSIONAL ELECTIVES

					PROG	GRAN		тсог	MES	(POs)			ļ	PSOs	5
SEM	COURSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	XML and Web Services	1	1	~		1								1	1	1
	R Programming for Data Science	1	1	1	1	1								~	1	1
v	Prolog Programming for Artificial Intelligence	1	1	1	1	1							1	1	1	~
	Knowledge Engineering	1	1	1		1							1	~	1	1
	Data Science Tools	1	1	1	1	1							1	1	1	1
	Image and Video Analytics	1	1	1		1								1	1	1
	Healthcare Analytics	1	1	~										1	1	1
VI	Cloud Computing for Data Analysis	1	1	1		1								1	1	1
	Computational Thinking	1	1	~					1					1	1	1
	Ethics in Data Science								1	1	1		1	1	1	1

					PRO	GRAN	I OU	тсог	MES	(POs)			I	PSOs	5
SEM	COURSE TITLE	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Data and Information Security	1	1	1										1	1	1
	Evolutionary Computation	1	1	1		1								1	1	1
	Pattern Recognition	1	1	1		1								1	1	1
	Web Analytics	~	~	~		1								~	~	1
	Principles of Management	~	~	~						1	~			1	~	~
VII	Stochastic Process	1	1	1					1	1	1		1	1	1	~
	Software Testing using Automated Tools								1	1	1			1	1	1
	Multivariate Analysis	1	1	1					1	1	1			1	1	~
	Social Network Analytics	1	1	1										1	1	1
	Entrepreneurship	1	1	~										~	~	~

					PRO	GRAN	I OU	TCOI	MES	(POs)				PSOs	\$
SEM		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	Data Mining and Information Security								1	1	1			1	~	1
	Speech Processing and Synthesis	1	1	1										1	~	1
	Cyber Security	1	~	~		1								1	1	1
	Predictive Analytics	1	~	~					~	~	~		~	~	~	1
	Statistical Computing	~	1	1						1	1			1	~	1
VIII	Engineering Economics								~	~	~			1	~	1
	Cognitive Systems	1	~	~					~	~	~			~	~	1
	Parallel Computing	1	1	1										1	1	1
	Bio-inspired Optimization Techniques	1	1	1										1	1	~
	Information Storage Management	~	1	1										~	1	1

		SEMESTE	RI					
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с
THEO	RY							
1	HS1101	Communicative English (Common to all Branches of B.E. / B. Tech Programmes)	HSMC	3	3	0	0	3
2	MA1102	Engineering Mathematics – I (Common to all Branches of B.E. / B. Tech Programmes)	BSC	4	4	0	0	4
3	PH1103	Engineering Physics (Common to all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
4	CY1104	Engineering Chemistry (Common to all Branches of B.E. / B. Tech Programmes)	BSC	3	3	0	0	3
5	GE1105	Problem Solving and Python Programming (Common to all Branches of B.E. / B. Tech Programmes)	ESC	3	3	0	0	3
6	GE1106	Engineering Graphics (Common to all Branches of B.E. / B. Tech Programmes)	ESC	6	2	0	4	4
PRAC	TICAL							
7	GE1107	Python Programming Laboratory (Common to all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	BS1108	Physics and Chemistry Laboratory (Common to all Branches of B.E. / B. Tech Programmes)	BSC	4	0	0	4	2
	-	Total		30	18	0	12	24

		SEMESTE	RII					
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	с
THEO	RY				<u> </u>			
1	HS1201	Professional English (Common to all Branches of B.E. / B. Tech Programmes)	HSMC	3	3	0	0	3
2	MA1251	Linear Algebra (Common to Al-DS & Al-ML)	BSC	4	4	0	0	4
3	PH1252	Physics for Information Science (Common to CSE, IT, AI-DS & AI- ML)	BSC	3	3	0	0	3
4	GE1204	Environmental Science and Engineering (Common to all Branches of B.E. / B. Tech Programmes)	HSMC	3	3	0	0	3
5	BE1251	Basic Electrical, Electronics and Measurement Engineering (Common to CSE, IT, AI-DS & AI- ML)	ESC	3	3	0	0	3
6	CS1206	Programming in C (Common to CSE, IT, AI-DS & AI- ML)	PCC	4	3	1	0	3
PRAC	TICAL							
7	GE1207	Engineering Practice Laboratory (Common to all Branches of B.E. / B. Tech Programmes)	ESC	4	0	0	4	2
8	CS1208	Programming in C Laboratory (Common to CSE, IT, AI-DS & AI- ML)	PCC	4	0	0	4	2
		Total		28	19	1	8	23

		SEMEST	ER III					
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
		THEO	RY					
1	MA1351	Probability and Statistics (Common to CSE, IT & AI-DS)	BSC	4	4	0	0	4
2	DS1301	Computer Organization and Architecture	ESC	3	3	0	0	3
3	CS1302	Data Structures (Common to CSE, IT,AI-DS, AI-ML & ECE Semester IV)	PCC	4	3	1	0	3
4	DS1302	Object Oriented Programming (Lab Integrated) (Common to AI-DS, EEE & EIE)	PCC	5	3	0	2	4
5	DS1303	Introduction to Artificial Intelligence (Common to AI-DS & AI-ML)	PCC	3	3	0	0	3
6	DS1304	Foundations of Data Science	PCC	3	3	0	0	3
		PRACTI	CAL					
7	DS1307	Data Structures Laboratory using Python (Common to AI-DS & AI-ML)	PCC	4	0	0	4	2
8	DS1308	Artificial Intelligence Laboratory (Common to AI-DS & AI-ML)	PCC	4	0	0	4	2
		Total		30	19	1	10	24

		SEMEST	ER IV					
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
		THEO	RY					<u></u>
1	MA1453	Discrete Mathematics (Common to CSE, IT & AI-DS)	BSC	4	4	0	0	4
2	CS1401	Design and Analysis of Algorithms (Common to CSE, IT, AI-DS & AI-ML)	PCC	3	3	0	0	3
3	CS1402	Operating Systems (Common to CSE, IT, AI-DS & AI-ML)	PCC	3	3	0	0	3
4	CS1403	Database Design and Management (Lab Integrated) (Common to CSE, IT, AI-DS & AI-ML)	PCC	5	3	0	2	4
5	DS1401	Python Programming for Data Science	PCC	3	3	0	0	3
6	ML1401	Foundations of Machine Learning (Common to IT, AI-DS & AI-ML)	PCC	3	3	0	0	3
		PRACT	ICAL					
7	DS1407	Data Science Laboratory using Python	PCC	4	0	0	4	2
8	ML1408	Machine Learning Laboratory (Common to IT, AI-DS & AI-ML)	PCC	4	0	0	4	2
9	HS1310	Professional Skills Laboratory	HSMC	2	0	0	2	1
		Total		31	19	0	12	25

		SEMEST	ER V							
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с		
	THEORY									
1DS1501Optimization in Data AnalysisPCC44004										
2	DS1502	Advanced Artificial Intelligence (Common to AI-DS & AI-ML)	PCC	4	3	1	0	3		
3	DS1503	Data Mining	PCC	4	3	1	0	3		
4	DS1504	Exploratory Data Analysis	PCC	4	3	1	0	3		
5		Open Electives - I	OEC	3	3	0	0	3		
6		Professional Elective - I	PEC	3	3	0	0	3		
	-	PRACTIC	CAL		-	-	-			
7	DS1507	Data Preparation and Analysis Laboratory	PCC	4	0	0	4	2		
8	DS1508	Advanced Artificial Intelligence Laboratory (Common to IT, AI-DS & AI-ML)	PCC	4	0	0	4	2		
		Total		30	19	3	8	23		
9	9 Value Added Courses Audit Course Two Weeks 1						1			

		SEMESTI	ER VI								
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с			
	THEORY										
1 DS1601 Modern Scripting Languages PCC 4 3 1 0 3											
2	DS1602	Computational Linguistics	PCC	4	3	1	0	3			
3	DS1603	Data Visualization	PCC	3	3	0	0	3			
4	DS1604	Data Analytics	PCC	5	3	0	2	4			
5		Open Elective - II	OEC	3	3	0	0	3			
6		Professional Electives - II	PEC	3	3	0	0	3			
		PRACTI	CAL								
7	DS1607	Data Visualization Laboratory	PCC	4	0	0	4	2			
8	DS1608	Mini Project - I	EEC	4	0	0	4	2			
		Total		30	18	2	10	23			
9		Audit Course (Optional)	AC								
	SEMESTER VII										

S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С		
		THEOF	Ϋ́Υ							
1	1 DS1701 Neuro-Fuzzy Computing PCC 4 3 1 0 3									
2	DS1702	Text Analytics	PCC	4	3	1	0	3		
3	DS1703	Computer Vision	PCC	4	3	1	0	3		
4	DS1704	Big Data Management	PCC	4	3	1	0	3		
5		Professional Elective - III	PEC	3	3	0	0	3		
6		Professional Elective - IV	PEC	3	3	0	0	3		
PRAC	TICAL	-			-					
7	DS1707	Neuro-Fuzzy Computing Laboratory	PCC	4	0	0	4	2		
8	DS1708	Mini Project - II	EEC	4	0	0	4	2		
	Total				18	4	8	22		

		SEMESTE	R VIII					
S.No.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	с
THEOF	RY							
1		Professional Elective - V	PEC	3	3	0	0	3
2		Professional Elective - VI	PEC	3	3	0	0	3
PRAC	FICAL							
3	DS1807	Project Work	EEC	20	0	0	20	10
		Total		26	6	0	20	16

TOTAL NO. OF CREDITS: 180

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	HS1101	Communicative English	3	3	0	0	3
2	HS1201	Professional English	3	3	0	0	3
3	GE1204	Environmental Science and Engineering	3	3	0	0	3
4	HS1310	Professional Skills Laboratory	2	0	0	2	1

HUMANITICS SCIENCE AND MANAGEMENT COURSES (HSMC)

BASIC SCIENCE COURSES (BSC)

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	MA1102	Engineering Mathematics - I	4	4	0	0	4
2	PH1103	Engineering Physics	3	3	0	0	3
3	CY1104	Engineering Chemistry	3	3	0	0	3
4	BS1108	Physics and Chemistry Laboratory	4	0	0	4	2
5	MA1251	Linear Algebra	4	4	0	0	4
6	PH1252	Physics for Information Science	3	3	0	0	3
7	MA1351	Probability and Statistics	4	4	0	0	4
8	MA1453	Discrete Mathematics	4	4	0	0	4

ENGINEERING SCIENCE COURSES (ESC)

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	GE1105	Problem Solving and Python Programming	3	3	0	0	3
2	GE1106	Engineering Graphics	6	2	0	4	4
3	GE1107	Python Programming Laboratory	4	0	0	4	2
4	BE1251	Basic Electrical, Electronics and Measurement Engineering	3	3	0	0	3
5	GE1207	Engineering Practice Laboratory	4	0	0	4	2
6	DS1301	Computer Organization and Architecture	3	3	0	0	3

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	CS1206	Programming in C	4	3	1	0	3
2	CS1208	Programming in C Laboratory	4	0	0	4	2
3	CS1302	Data Structures	4	3	1	0	3
4	DS1302	Object Oriented Programming (Lab Integrated)	5	3	0	2	4
5	DS1303	Introduction to Artificial Intelligence	3	3	0	0	3
6	DS1304	Foundations of Data Science	3	3	0	0	3
7	DS1307	Data Structure Laboratory using Python	4	0	0	4	2
8	DS1308	Artificial Intelligence Laboratory	4	0	0	4	2
9	CS1401	Design and Analysis of Algorithms	3	3	0	0	3
10	CS1402	Operating Systems	3	3	0	0	3
11	CS1403	Database Design and Management (Lab Integrated)	5	3	0	2	4
12	ML1401	Foundations of Machine Learning	3	3	0	0	3
13	DS1401	Python Programming for Data Science	3	3	0	0	3
14	DS1407	Data Science Laboratory using Python	4	0	0	4	2
15	ML1408	Machine Learning Laboratory	4	0	0	4	2
16	DS1501	Optimization in Data Analysis	4	4	0	0	4
17	DS1502	Advanced Artificial Intelligence	4	3	1	0	3
18	DS1503	Data Mining	4	3	1	0	3
19	DS1504	Exploratory Data Analysis	4	3	1	0	3
20	DS1507	Data Preparation and Analysis Laboratory	4	0	0	4	2
21	DS1508	Advanced Artificial Intelligence Laboratory	4	0	0	4	2
22	DS1601	Modern Scripting Languages	4	3	1	0	3
23	DS1602	Computational Linguistics	4	3	1	0	3
24	DS1603	Data Visualization	3	3	0	0	3
25	DS1604	Data Analytics	5	3	0	2	4
26	DS1607	Data Visualization Laboratory	4	0	0	4	2
27	DS1701	Neuro-Fuzzy Computing	4	3	1	0	3
28	DS1702	Text Analytics	4	3	1	0	3
29	DS1703	Computer Vision	4	3	1	0	3
30	DS1704	Big Data Management	4	3	1	0	3
31	DS1707	Neuro-Fuzzy Computing Laboratory	4	0	0	4	2

PROFESSIONAL CORE COURSES (PCC)

PROFESSIONAL ELECTIVE COURSES (PEC)

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	DS1511	XML and Web Services	3	3	0	0	3
2	DS1512	R Programming for Data Science	3	3	0	0	3
3	DS1513	Prolog Programming for Artificial Intelligence	3	3	0	0	3
4	DS1514	Data Science Tools	3	3	0	0	3
5	IT1514	Knowledge Engineering	3	3	0	0	3

SEMESTER V PROFESSIONAL ELECTIVE - I

SEMESTER VI PROFESSIONAL ELECTIVE - II

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	DS1611	Image and Video Analytics	3	3	0	0	3
2	DS1612	Healthcare Analytics	3	3	0	0	3
3	DS1613	Cloud Computing for Data Analysis	3	3	0	0	3
4	DS1614	Computational Thinking	3	3	0	0	3
5	DS1615	Ethics in Data Science	3	3	0	0	3

SEMESTER VII PROFESSIONAL ELECTIVE - III

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	с
1	DS1711	Data and Information Security	3	3	0	0	3
2	DS1712	Evolutionary Computation	3	3	0	0	3
3	DS1713	Pattern Recognition	3	3	0	0	3
4	DS1714	Web Analytics	3	3	0	0	3
5	MG1001	Principles of Management	3	3	0	0	3

SEMESTER VII PROFESSIONAL ELECTIVE - IV

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	DS1721	Stochastic Process	3	3	0	0	3
2	DS1722	Software Testing using Automated Tools	3	3	0	0	3
3	DS1723	Social Network Analytics	3	3	0	0	3
4	DS1724	Multivariate Analysis	3	3	0	0	3
5	MG1725	Entrepreneurship	3	3	0	0	3

SEMESTER VIII PROFESSIONAL ELECTIVE - V

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Ρ	С
1	DS1811	Data Mining and Information Security	3	3	0	0	3
2	DS1812	Speech Processing and Synthesis	3	3	0	0	3
3	DS1813	Cyber Security	3	3	0	0	3
4	DS1814	Predictive Analytics	3	3	0	0	3
5	DS1815	Statistical Computing	3	3	0	0	3

SEMESTER VIII PROFESSIONAL ELECTIVE - VI

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	DS1821	Cognitive Systems	3	3	0	0	3
2	DS1822	Parallel Computing	3	3	0	0	3
3	DS1823	Bio-inspired Optimization Techniques	3	3	0	0	3
4	DS1824	Information Storage Management	3	3	0	0	3
5	MG1825	Engineering Economics	3	3	0	0	3

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	DS1608	Mini Project – I	4	0	0	4	2
2	DS1708	Mini Project - II	4	0	0	4	2
3	DS1807	Project Work	20	0	0	20	10

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

OPEN ELECTIVE COURSES – I & II

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	с
1	OBT101	Industrial Biotechnology	3	3	0	0	3
2	OBT104	Bio Sensors	3	3	0	0	3
3	OBT105	Introduction to Nano Science and Nano Technology	3	3	0	0	3
4	OCE102	Introduction to Geographic Information system	3	3	0	0	3
5	OCH101	Hospital Management	3	3	0	0	3
6	OEC103	Basics of Embedded Systems and IoT	3	3	0	0	3
7	OEE101	Basic Circuit Theory	3	3	0	0	3
8	OEE103	Introduction to Renewable Energy Systems	3	3	0	0	3
9	OEI102	Robotics	3	3	0	0	3
10	OMB101	Total Quality Management	3	3	0	0	3
11	OME104	Industrial Safety Engineering	3	3	0	0	3

S.No.	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	т	Ρ	С
1	AD1001	Constitution of India	2	2	0	0	0
2	AD1002	Value Education	2	2	0	0	0
3	AD1003	Pedagogy Studies	2	2	0	0	0
4	AD1004	Stress Management by Yoga	2	2	0	0	0
5	AD1005	Personality Development Through Life EnlightenmentSkills	2	2	0	0	0
6	AD1006	Unnat Bharat Abhiyan	2	2	0	0	0
7	AD1007	Essence of Indian Knowledge Tradition	2	2	0	0	0
8	AD1008	Sanga Tamil LiteratureAppreciation	2	2	0	0	0

AUDIT COURSE (AC)

* Registration for any of these courses is optional to students

S. No.	SUBJECT AREA	I	Ш	ш	IV	v	VI	VII	VIII	TOTAL	PERCENTAGE OF CREDIT		
1	HSMC	3	6		1					10	5.56		
2	BSC	12	7	4	4					27	15.00		
3	ESC	9	5	3						17	9.44		
4	PCC		5	17	20	17	15	14		88	48.89		
5	PEC					3	3	6	6	18	10.00		
6	OEC					3	3			6	3.33		
7	EEC						2	2	10	14	7.78		
TOTAL		24	23	24	25	23	22	22	16	180	100		

HS1101 COMMUNICATIVE ENGLISH L T P Common for all Branches of B.E. / B. Tech Programmes 3 0 0 OBJECTIVES To develop the basic reading and writing skills of first year engineering and technolog students. To help learners develop their listening skills, which will, enable them listen to lectures a comprehend them by asking questions; seeking clarifications. To help learners develop their speaking skills and speak fluently in real contexts. * To help learners develop their speaking skills and speak fluently in real contexts.	C 3										
 Common for all Branches of B.E. / B. Tech Programmes 3 0 0 OBJECTIVES To develop the basic reading and writing skills of first year engineering and technolog students. To help learners develop their listening skills, which will, enable them listen to lectures a comprehend them by asking questions; seeking clarifications. To help learners develop their speaking skills and speak fluently in real contexts. To help learners develop vocabulary of a general kind by developing their reading skills. 	3										
 OBJECTIVES To develop the basic reading and writing skills of first year engineering and technologistudents. To help learners develop their listening skills, which will, enable them listen to lectures a comprehend them by asking questions; seeking clarifications. To help learners develop their speaking skills and speak fluently in real contexts. To help learners develop vocabulary of a general kind by developing their reading skills. 											
 To help learners develop their listening skills, which will, enable them listen to lectures a comprehend them by asking questions; seeking clarifications. To help learners develop their speaking skills and speak fluently in real contexts. To help learners develop vocabulary of a general kind by developing their reading skills. 	ogy										
 comprehend them by asking questions; seeking clarifications. To help learners develop their speaking skills and speak fluently in real contexts. To help learners develop vocabulary of a general kind by developing their reading skills. 											
UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS	9										
Reading – critical reading – finding key information in a given text – shifting facts from opinions - Writing - autobiographical writing - developing hints. Listening- short texts- short formal and informal conversations. Speaking- basics in speaking - introducing oneself - exchanging personal information- speaking on given topics & situations Language development– voices- Wh- Questions- asking and answering-yes or no questions– parts of speech. Vocabulary development prefixes- suffixes- articles - Polite Expressions.											
UNIT II GENERAL READING AND FREE WRITING	9										
Reading: Short narratives and descriptions from newspapers (including dialogues and conversations; Reading Comprehension Texts with varied question types - Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –. Listening - long texts - TED talks - extensive speech on current affairs and discussions Speaking – describing a simple process – asking and answering questions - Language development – prepositions, clauses. Vocabulary development- guessing meanings of words in context – use of sequence words.											
UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT	9										
Reading- short texts and longer passages (close reading) & making a critical analysis of the given text Writing – types of paragraph and writing essays – rearrangement of jumbled sentences. Listening: Listening to ted talks and long speeches for comprehension. Speaking-role plays - asking about routine actions and expressing opinions. Language development-degrees of comparison- pronouns- Direct vs. Indirect Questions. Vocabulary development – idioms and phrases- cause & effect expressions, adverbs.	:03										
UNIT IV READING AND LANGUAGE DEVELOPMENT	9										
Reading- comprehension-reading longer texts- reading different types of texts- magazines. Writing- letter writing, informal or personal letters-e-mails-conventions of personal email- Listening: Listening comprehension (IELTS, TOEFL and others). Speaking -Speaking about friends/places/hobbies - Language development- Tenses- simple present-simple past- present continuous and past continuous- conditionals – if, unless, in case, when and others Vocabulary development- synonyms-antonyms- Single word substitutes- Collocations.	;04										
UNIT V EXTENDED WRITING	9										
Reading: Reading for comparisons and contrast and other deeper levels of meaning –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing- Listening - popular speeches and presentations - Speaking - impromptu speeches & debates Language development-modal verbs- present/ past perfect tense - Vocabulary development-Phrasal verbs- fixed and semi-fixed expressions.											
	DS										

TEXT BOOKS															
1.	Board	of E	ditors	s. Us	ing E	Englis	h, A	Cou	irse l	oook	for U	ndergr	aduate	Enginee	rs and
	Techn	ologist	s. Ori	ent Bl	ack S	wan l	_imite	d, Hy	derab	ad: 20	20				
2.	Sanjay	/ Kuma	ar & P	ushp	Lata (Comn	nunica	ation S	Skills	Secon	d Editi	on, Ox	ford Univ	ersity Pr	ess:
	2015.			_		_				_		_			
3.	Richar	ds, C.	Jack.	Inter	chang	e Stu	dents	' Boo	k-2 Ne	ew Del	hi: CU	P, 201	5.		
REFE	RENCE	BOO	KS												
1.	Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.														
2.	Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. Cengage														
2	Learning ,USA: 2007 Redston Chris & Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book&														
5.	Redston, Chris & Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005														
4	Workbook) Cambridge University Press, New Delhi: 2005 Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English.														
	Cambridge University Press, Cambridge: Reprint 2011														
5.	5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013														
6.	6. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford														
University Press: 2020															
COURSE OUTCOMES															
Upon completion of the course, students will be able to															
CO1	CO1 Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using														
	approp	oriate o	comm	unicat	tive st	rategi	es.								
CO2	Write	cohes	ively a	and c	ohere	ently	and f	lawles	ssly a	voiding	g grar	nmatic	al errors	s, using	a wide
	vocab	ulary ra	ange,	orgar	nizing	their i	deas	logica	ally on	a topi	с.				
CO3	Read	differe	nt gen	res of	texts	adop	ting v	ariou	s read	ling str	ategie	s.			
CO4	Listen	/view a	ind co	mpre	hend	differe	ent sp	oken	disco	urses/e	excerp	ts in di	fferent a	ccents	
CO5	Identif	v topic	s and	form	late o	nuesti	ons fo	or pro	ductiv	e inqui	irv				
		,		M			E CO	e WI	гн рс			e			
								5 111				5	PPOC		
COc				PRC	OGRA	MOL	JTCO	MES	(POs))			OUTC		PSOs)
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	-	-	-	-	-	2	3	-	-	2	-	2
CO2	-	1	-	2	-	-	-	-	-	3	-	-	2	-	2
CO3	-	2	-	3	-	-	-	-	-	2	-	-	2	-	1
CO4	-	-	-	-	-	-	-	-	2	2	-	-	2	-	2
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	-	2

MA1102	ENGINEERING MATHEMATICS –I	L	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes	4	0	0	4
OBJECTIVES					
 The go of tradit 	al of this course is to achieve conceptual understanding and to retain the	e be	st tra	diti	ons
✤ The sv	Ilabus is designed to provide the basic tools of calculus mainly for	the	purp	OSE	e of
modelir	ng the engineering problems mathematically and obtaining solutions.		P P		
✤ Matrix /	Algebra is one of the powerful tools to handle practical problems arisin	g in	the	fiel	d of
engine	ering.	0			
This is	a foundation course of Single Variable and multivariable calculus play	/s a	n im	por	tant
role in	the understanding of science, engineering, economics and computer s	scier	nce,	am	ong
other d	isciplines.				•
UNIT I	MATRICES				12
Eigenvalues a	nd Eigenvectors of a real matrix – Characteristic equation – Prop	ertie	s of		
Eigenvalues a	nd Eigenvectors - Cayley-Hamilton theorem - Diagonalization of ma	atrice	es –		
Reduction of a	a quadratic form to canonical form by orthogonal transformation – N	atur	e of	C	;01
quadratic form	S				
UNIT II	CALCULUS OF ONE VARIABLE				12
Limit of a func	tion - Continuity - Derivatives - Differentiation rules – Interval of increas	sing	and		
decreasing fun	ctions – Maxima and Minima - Intervals of concavity and convexity.	0		C	;02
UNIT III	CALCULUS OF SEVERAL VARIABLES				12
Partial differer	ntiation – Homogeneous functions and Euler's theorem – Total deri	vativ	/e –		
Change of var	iables – Jacobians – Partial differentiation of implicit functions – Taylor	's se	eries		
for functions of	f two variables – Maxima and minima of functions of two variables – La	gran	geʻs	C	;03
method of und	etermined multipliers.				
UNIT IV	INTEGRAL CALCULUS				12
Definite and Ir	definite integrals - Substitution rule - Techniques of Integration - Integr	atio	n by		
parts, Trigonoi	metric integrals, Trigonometric substitutions, Integration of rational func	tion	s by	С	:04
partial fraction,	Integration of irrational functions - Improper integrals.				
UNIT V	MULTIPLE INTEGRALS				12
Double integra	als – Change of order of integration – Double integrals in polar coord	inate	es –		
Area enclosed	I by plane curves – Change of variables from Cartesian to polar in	do	uble	C	:05
integrals-Triple	e integrals – Volume of solids				
	TOTAL	. : 60) PE	RIC	DS
TEXT BOOKS					
1. Grewal 2014.	B.S., Higher Engineering Mathematicsll, Khanna Publishers, New Delk	ni, 4	3rd E	Edit	ion,
2. James	Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th	n Ec	dition	, N	۱ew
Delhi,20	015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems o	nly),	, 2.8,	3.	1 to
3.6, 3.1	1, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change	e the	oren	n), ^j	5.5,
7.2 - 7.4	4 and 7.8].				

REFE	RENCE	BOO	KS												
1.	Anton	H. Biv	ens.	and	Davis	. S. "(Calcul	us". V	Vilev.	10th E	dition.	2016.			
2.	Jain F	K. ar	nd Ive	ngar	S.R.K	—/	Advar	iced I	Engin	eerina	Mathe	ematics	sll. Naros	sa Publi	cations.
	New D)elhi. 3	rd Ed	ition. 2	2007.	, -				55					,
3.	Narav	anan. S	S. and	d Man	icava	chaqo	om Pil	lai. T.	K –	-Calcu	ilus" V	olume	I and II.	S. Viswa	nathan
	Publis	hers P	vt. Ltc	L. Ch	ennai	2007	7	, .	,				,		
4.	Srima	ntha Pa	al and	Bhur	nia. S.	C. "E	naine	erina	Mathe	ematic	s" Oxfo	ord Uni	iversitv F	ress. 20	15.
5.	5. T. Veerarajan. Engineering Mathematics – I, McGraw Hill Education; First edition 2017.														
COURSE OUTCOMES															
Upon completion of the course, students will be able to															
Upon completion of the course, students will be able to Have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition															
CO1 Have a clear idea or matrix algebra pertaining Eigenvalues and Eigenvectors in addition dealing with quadratic forms.															
Understand the concept of limit of a function and apply the same to deal with continuity and															
CO2	² derivative of a given function. Apply differentiation to solve maxima and minima problems,														
	which	which are related to real world problems.													
CO2	Have	the ide	ea of	exter	nsion	ofa	functi	on of	one	variab	le to s	everal	variable	s. Multiv	/ariable
003	functio	ons of r	eal va	ariable	es are	inevi	table i	in eng	jineeri	ing.					
	Under	stand t	the co	ncept	t of in	tegra	tion th	nrougl	h func	damen	tal the	orem o	of calculu	ıs. Also	acquire
CO4	skills	to eva	luate	the	integi	rals i	using	the	techni	ques	of sub	ostitutio	on, parti	al fraction	on and
	integra	ation by	parts	s alon	g with	the k	knowle	edge	of imp	roper i	integra	ıls.			
005	Do do	uble a	nd tri	ole in	tegrat	ion s	o that	t they	can	handle	integ	rals of	higher of	order wh	hich are
005	applie	d in en	ginee	ring fi	eld.			,			0		0		
			•	M	APPI	NG O	F CO	s WI1	гн рс)s AN[D PSO	s			
									<i>(</i> 1 -)				PROG	RAM SP	ECIFIC
COs				PRC	OGRA		JTCO	MES	(POs)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	2	3	-	-	3	2	3	3	3	3	2
CO2	3	3	3	2	2	1	-	-	-	-	1	2	3	3	2
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	3	2

-

-

-

-

-

-

-

-

CO4

CO5

PH1103	ENGINEERING PHYSICS	L	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes	3	0	0	3
 OBJECTIVES To make the second sec	te the students to understand about the elastic property and stress strain cate the students about principle of laser and its role in optical fibers and sors and communication. In the students about the heat transfer through solids and liquids. Incate the students about the quantum concepts and its use to explore an Compton effect tunnelling electron microscopy and its applications.	diag l its a ain	gram appli blaci	cati k b	ons ody
 To mal growth 	techniques.	res	and	vari	ous
UNIT I	PROPERTIES OF MATTER				9
Elasticity – Str strength – tors experiment - uniform and no elasticity-I-sha	ress-strain diagram and its uses - factors affecting elastic modulus and ional stress and deformations – twisting couple - torsion pendulum: the pending of beams - bending moment – cantilever: theory and experi- on-uniform bending: theory and experiment – Practical applications of mo- ped girders - stress due to bending in beams.	d tei eory rime odulu	nsile and nt – us of	c	:01
UNIT II	LASER AND FIBER OPTICS				9
Lasers : popul cavity, optical and heterojun numerical ape mode) – losse method-fibre co optical fiber- E	lation of energy levels, Einstein's A and B coefficients derivation – a amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homo ction – Industrial and medical applications of Laser– Fiber optics: p rture and acceptance angle - types of optical fibres (material, refractives associated with optical fibers – Fabrication of Optical fiber-Double ptic sensors: pressure and displacement-Industrial and medical application indoscopy-Fiber optic communication system.	reso ojuno orinc re in cruo atior	nant ction iple, dex, cible is of	c	:02
UNIT III	THERMAL PHYSICS				9
Transfer of hea strips - therma conductivity –F through comp applications: h	at energy – thermal expansion of solids and liquids – expansion joints - b al conduction, convection and radiation – heat conductions in solids – Rectilinear flow of heat- Lee's disc method: theory and experiment - co ound media (series and parallel)-Radial flow of heat– thermal insu eat exchangers, refrigerators, oven, Induction furnace and solar water he	the nduc nduc ater	tallic rmal ction on – s.	C	:03
UNIT IV	QUANTUM PHYSICS				9
Black body rad verification – v physical signif equations – (qualitative) - s	diation – Planck's theory (derivation) – Compton effect: theory and expensive particle duality – electron diffraction – concept of wave function cance – Schrödinger's wave equation – time independent and time de particle in a one-dimensional rigid box – Electron microscope-to canning tunnelling microscope-Applications of electron microscopy.	erime a and epen unne	ental d its dent elling	c	:04
UNIT V	CRYSTAL PHYSICS			-	9
Single crystalli systems, Bray distances coo structures – (vectors, stack	ne, polycrystalline and amorphous materials – single crystals: unit cel rais lattices, directions and planes in a crystal, Miller indices – inter rdination number and packing factor for SC, BCC, FCC, HCP and of Graphite structure-crystal imperfections: point defects, line defects – ing faults – growth of single crystals: solution and melt growth tech b-Applications of Single crystal (Qualitative)	I, cr <u>y</u> er-pla diam - Bu hniq	ystal anar iond irger ues-	c	:05
Epitaxiai growi					

TEXT	BOOK	5													
1.	Bhatta	charya	a, D.K	. & Po	onan	η, Τ. "	Engin	eering	g Phy	sics". (Dxford	Univer	sity Pres	s, 2019.	
2.	Gaur,	R.K. &	Gupt	a, S.L	. "Eng	gineer	ring P	hysics	s". Dh	anpat	Rai Pu	blishe	rs, 2017.		
3.	Pande	y, B.K	. & Ch	aturv	edi, S	. "Eng	gineer	ing P	hysics	s". Cen	igage l	_earnir	ng India,	2019.	
REFE	RENCE	BOO	KS												
1.	1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.														
2.	. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.														
3.	Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'.														
	W.H.Freeman, 2007.														
COUR	COURSE OUTCOMES														
Upon	oon completion of the course, students will be able to														
CO1	Gain knowledge on the basics of properties of matter and its applications,														
	Acquire knowledge on the concepts of waves and optical devices and their applications in fibre														
CO2	optics.														
	Hove adaguate knowledge on the concente of thermal properties of materials and their														
CO3	applica	auequ ations i	n ovn	ansio	n ioint	ts and	le cui I heat	Avch	s u ander		a prop		UI Mate		
			<u>п слр</u>	411310	i join			CAUN		<u>.</u>					
CO4	Get kr	nowled	lge oi	n adv	ance	d phy	/SICS	conce	epts o	of qua	ntum	theory	and its	applicat	tions in
	tunnell	ng mic	crosco	pes, a	and										
CO5	Unders	stand t	he ba	sics o	f crys	tals, t	heir s	tructu	ires a	nd diffe	erent c	rystal g	growth te	chnique	S.
				Μ	APPI	NG O	F CO	s WI	гн рс)s AN[D PSO	s			
													PROG	RAM SP	ECIFIC
COs				PRO	GRA	MOU	ICOI	MES ((POs)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	2	3
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3	3

	Ρ	С										
Common for all branches of B.E. / B. Tech Programmes 3 0	0	3										
OBJECTIVES		•										
Principles of water characterization and treatment for industrial purposes.												
 Principles and applications of surface chemistry and catalysis. 												
 Phase rule and various types of allovs. 												
 Various types of fuels, applications and combustion 												
 Conventional and non-conventional energy sources and energy storage device. 												
		9										
Hardness of water – Types – Expression of hardness – Units – Estimation of hardness h	v											
EDTA method – Numerical problems on EDTA method – Boiler troubles (scale and sludge	У											
caustic emprittlement, boiler corresion, priming and feaming). Treatment of boiler feed wate	, r											
Internal treatment (carbonate phosphate colloidal sodium aluminate and calgo	" (CO1										
- Internal treatment (carbonate, prosphate, conordal, socium aluminate and carbo	ii sf											
brookish water, by reverse Opmosis	Л											
		0										
UNIT II SURFACE CHEMISTRY AND CATALYSIS	_	9										
Surface chemistry: Types of adsorption – Adsorption of gases on solids – Adsorption of solut	e											
from solutions – Adsorption isotnerms – Freundlich's adsorption isotnerm – Langmuir	S											
adsorption isotherm – Kinetics of uni-molecular surface reactions – Adsorption i	n											
chromatography – Applications of adsorption in pollution abatement using PAC.		CO2										
Catalysis: Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning an	a											
catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis	-											
Enzyme catalysis – Michaelis-Menten equation.												
UNIT III PHASE RULE AND ALLOYS		9										
Phase rule : Introduction – Definition of terms with examples – One component system – Wate	er											
system – Reduced phase rule – Thermal analysis and cooling curves – Two componer	nt											
systems – Lead-silver system – Pattinson process.	(CO3										
Alloys: Introduction – Definition – Properties of alloys – Significance of alloying – Function	s											
and effect of alloying elements – Nichrome, Alnico, Stainless steel (18/8) – Heat treatment (DT											
steel – Non-terrous alloys – Brass and bronze.												
UNIT IV FUELS AND COMBUSTION		9										
Fuels : Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coa	al											
- Analysis of coal (proximate and ultimate) Carbonization - Manufacture of metallurgica	al											
coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petro	D											
(Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil	-											
	er (CO4										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Powe												
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Powe alcohol and biodiesel.												
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Powe alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values	_											
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition	n											
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method.	n											
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON–CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES	n	9										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignitic temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear	n n ır	9										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignitic temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactor for power generation	n 11 11	9										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON–CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactors – Classification of reactors – Light water nuclear reactor for power generation Breeder reactor – Solar energy conversion – Solar cells – Wind energy – Fuel cells	n 11 - (9 CO5										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignitic temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON–CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactors – Classification of reactors – Light water nuclear reactor for power generation Breeder reactor – Solar energy conversion – Solar cells – Wind energy – Fuel cells Hydrogen-oxygen fuel cell . Batteries – Types of batteries - Alkaline batteries – Lead-acid		9 CO5										
Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels : Introduction – Calorific value – Higher and lower calorific values Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignitic temperature – Explosive range – Flue gas analysis by Orsat Method. UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactors – Classification of reactors – Light water nuclear reactor for power generation Breeder reactor – Solar energy conversion – Solar cells – Wind energy – Fuel cells Hydrogen-oxygen fuel cell . Batteries – Types of batteries - Alkaline batteries – Lead-acid Nickel-cadmium and Lithium batteries.		9 CO5										

TEXT BOOKS																
1.	1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai Pub. Co., New															
	Delhi,(2015).			,	9									.,	
2.	S.S. D	ara, S	.S. Ur	mare,	"A te	xt boo	ok of l	Engin	eering	g Chen	nistry"	S.Cha	nd & Co	.Ltd., Ne	w Delhi	
	(2020)															
3.	S. Vai	ram, F	P. Kaly	yani a	and S	uba F	Rames	sh, "E	ngine	ering (Chemi	stry", V	Viley Ind	lia (P) Lt	d. New	
	Delhi,	(2018)						_								
4.	P. Ka	innan,	A.	Ravi	krishr	ian, '	'Engir	heerin	g Ch	nemistr	ry", Sr	i Krisl	hna Hi-t	tech Pu	blishing	
REFE	REFERENCE BOOKS															
1.	B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).															
2.	B. SIV	asanka	ar En(th "⊏i	gineei	ring C	nemis Chom	stry i victry"			W—HIII Loornir	PUD.C	O.Ltd, O.Ltd	td Dolb	ni (2008) i (2015)).	
3. 4	Shikha		un, En Inwal	"End	rineer	ina	Cherr	, Cenț nistrv_	Jaye i Fund	ament	iy mur als ai	a(Γ)∟ nd Δr	nu., Dem	n, (2015) ns" Car	nhridae	
	University Press Delbi (2015)													libridge		
5.	A. Pahari, B. Chauhan, "Engineering Chemistry". Firewall Media., New Delhi., (2010)															
6.	Sheik	Midee	n., En	ginee	ring C	hemi	stry, A	Airwal	k Pub	licatior	ns, Che	ennai (2018).			
COUR	RSE OU	тсом	ES													
Upon	comple	etion o	of the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Able to	o unde	rstand	d impu	urities	in inc	lustria	al wate	er, bo	iler tro	ubles,	interna	al and ex	ternal tre	eatment	
	metho	ds of p	ourifyir	ng wa	ter.											
CO2	Able t	o unde	erstan	d cor	ncepts	s of a	bsorp	otion,	adsor	ption,	adsor	otion is	sotherms	s, applica	ation of	
	adsorp	ption fo	r pollu	ution a	abatei	<u>ment,</u>	catal	ysis a	nd en	zyme ł	kinetic	S.				
<u> </u>	Able to	Able to recognize significance of alloying, functions of alloying elements and types of alloys,														
003	uses o	uses or alloys. They should be acquainted with phase rule and reduced phase and its														
	Able to	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be														
CO4	able to	under	rstand	l com	bustio	n of fi	uels. i	metho	d of c	prepara	ation of	i bio-di	esel. svr	thetic pe	etrol.	
	Able to	o unde	rstand	d conv	/entio	nal, n	on–co	onven	tional	energ	y sour	ces, nu	uclear fis	sion and	fusion,	
CO5	power	gener	ation	by n	uclea	r read	ctor,	wind,	solar	energ	, jy and	prepa	aration, i	uses of	various	
	batteri	es.		-												
				Μ		NG O	F CO	s WI	гн рс)s AN[D PSO	S				
								MEO					PROG	RAM SP	ECIFIC	
COs				PRU	JGRA				(PUS))	n	T	OUTC	OMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2	1	
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1	1	
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2	2	
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1	2	
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2	3	

GE1105	PROBLEM SOLVING AND PYTHON PROGRAMMING	Т	Ρ	С
	Common for all branches of B.E. / B. Tech Programmes 3	0	0	3
OBJECTIVE	5			
To know	ow the basics of algorithmic problem solving			
 To write 	te simple python programs			
 To de 	velop python program by using control structures and functions			
 To use 	e python predefined data structures			
 To wri 	te file-based program			
UNIT I				g
Algorithms, B	ulding blocks of algorithms: statements, state, control flow, functions, Not	ation:	T	1
pseudo code	e, flow chart, programming language, Algorithmic problem solving:	Basic	;	
algorithms, f	owcharts and pseudocode for sequential, decision processing and ite	rative	C	01
processing st	trategies, Illustrative problems: find minimum in a list, insert a card in a	list of	6	
sorted cards,	guess an integer number in a range, Towers of Hanoi.			
UNIT II				9
Python Introc	L Iuction, Technical Strength of Python, Python interpreter and interactive r	node,	Т	
Introduction to	o colab , pycharm and jupyter idle(s) ,Values and types: int, float, boolean, s	string.		
and list; Built-	in data types, variables, Literals, Constants, statements, Operators: Assign	ment,	C	02
Arithmetic, R	elational, Logical, Bitwise operators and their precedence, Expressions,	tuple	5	
assignment, /	Accepting input from Console, printing statements, Simple Python programs			
UNIT III	CONTROL FLOW, FUNCTIONS AND STRINGS			9
Conditionals:	Boolean values and operators, conditional (if), alternative (if-else), ch	ained		
conditional (if	-elif-else); Iteration: while, for; Loop manipulation using pass, break, con	tinue,		
and else; Mo	dules and Functions: function definition and use, flow of execution, param	neters	;	
and argume	nts, local and global scope, return values, function composition, recu	rsion.	C	03
Strings: string	g slices, immutability, string functions and methods, string module; Illust	rative		
programs: sq	uare root, gcd, exponentiation, sum an array of numbers, linear search, l	oinary	,	
search.				
UNIT IV	LISTS, TUPLES, DICTIONARIES			9
Lists: Definin	g list and list slicing, list operations, list slices, list methods, list loop	o, list		
Manipulation,	mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples:	tuple	:	
assignment, t	uple as return value, tuple Manipulation; Dictionaries: operations and met	hods	C	04
advanced list	processing - list comprehension; Illustrative programs: selection sort, ins	ertion		
sort, merge s	ort, histogram.			
UNIT V	FILES, MODULES, PACKAGES			9
Files and exc	eption: Concept of Files, Text Files; File opening in various modes and clos	ing of		
a file, Format	Operators, Reading from a file, Writing onto a file, File functions- open(), cl	ose(),		
read(),readlin	e(), readlines(),write(), writelines(),tell(),seek(), Command Line arguments; I	Errors	C	05
and exceptio	ns: handling exceptions; modules, packages; introduction to numpy, matp	lotlib.		
Illustrative pro	ograms: word count, copy a file.			

TEXT BOOKS															
1.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2 nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016														edition,
	(http://	green	teapro	ess.co	om/wp	o/think	cpytho	on/)							
2.	Guido van Rossum and Fred L. Drake Jr, — An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.														
3.	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019.														
REFERENCE BOOKS															
1.	. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013														Revised
2.	Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd. 2016.														ning in 6.
3.	Timothy A. Budd, —Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd., 2015.														
4.	Kenne 2012.	th A.	Lam	bert,	—Fu	ndam	entals	s of I	Pytho	n: Firs	st Prog	gramsl	, CENG	AGE Le	earning,
5.	Charle Proble	s Die m-Sol	erbach Iving F	n, —I Focus	ntrod , Wile	uctior y Indi	n to ia Edi [:]	Comp tion, 2	outer 2013.	Scienc	ce usi	ng Py	thon: A	Compu	tational
6.	Paul G	Gries, .	Jennif	er Ca	mpbe	ll and	Jaso	n Moi	ntojo,	—Prac	ctical F	rogran	nming: A	n Introdu	uction.
COUR	SE OU	TCON	IES												
Upon	comple	etion o	of the	cour	se, si	tuden	ts wi	ll be a	able t	0					
CO1	Develo	op algo	orithm	nic sol	utions	s to si	mple	comp	utatio	nal pro	blems				
CO2	Develo	op sim	ple co	onsole	e appl	icatio	n in p	ython							
CO3	Develo	op pytl	hon p	rograr	n by a	applyi	ng co	ntrol s	structu	ure and	d deco	mpose	program	n into fun	ctions.
CO4	Repres	sent c	ompo	und d	ata us	sing p	ython	i lists,	tuple	s, and	diction	aries.			
CO5	Read a	and w	rite da	ata fro	m/to f	files ir	ו Pyth	on.							
				N	IAPPI	NG C	OF CC)s Wl	TH PO	Ds ANI	D PSO	S			
COs			1	PRC	OGRA	MOL	лтсо	MES	(POs))			PROGI OUTC	RAM SP OMES (I	ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
0.00	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2

GE1106	ENGINEERING GRAPHICS	L	Т	Р	С							
	Common for all branches of B.E. / B. Tech Programmes	2	0	4	4							
OBJECTIVES			•									
To develop in students, graphic skills for communication of concepts, ideas and design												
Engine	ering products			•								
 To expose them to existing national standards related to technical drawings. 												
CONCEPTS A	ND CONVENTIONS (Not for Examination)				1							
Importance of	graphics in engineering applications - Use of drafting instruments	s –	BIS									
conventions and specifications – Size, layout and folding of drawing sheets – Lettering and												
dimensioning.												
UNIT I	PLANE CURVES AND FREEHAND SKETCHING			7	+12							
Basic Geometr	ical constructions. Curves used in engineering practices: Conics – Con	struc	tion									
of ellipse, par	abola and hyperbola by eccentricity method – Construction of cy	vcloi	d –									
construction of	involutes of square and circle – Drawing of tangents and normal to th	, e ab	ove									
curves.				С	:01							
Visualization c	oncepts and Free Hand sketching: Visualization principles -Represen	tatio	n of									
Three-Dimensi	onal objects – Layout of views- Freehand sketching of multiple vie	ws f	rom									
pictorial views	of objects											
	PROJECTION OF POINTS, LINES AND PLANE SURFACE			6	+12							
Orthographic p	rojection- principles-Principal Planes-First angle projection-projection c	of po	ints									
Projection of st	traight lines (only First angle projections) inclined to both the principal	plan	es -									
Determination	of true lengths and true inclinations by rotating line method and	d tra	aces	С	02							
Projection of p	lanes (polygonal and circular surfaces) inclined to both the principal pl	ane	s by									
rotating object	method.											
UNIT III	PROJECTION OF SOLIDS			5	+12							
Projection of si	mple solids like prisms, pyramids, cylinder, cone and truncated solids v	vher	the	c	03							
axis is inclined	to one of the principal planes by rotating object method.											
UNIT IV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT			6	+12							
0 11 1 1				+								
Sectioning of a	bove solids in simple vertical position when the cutting plane is incline	ea to	the									
Development of	icipal planes and perpendicular to the other – obtaining the shape of	Sec	dora	С	04							
and cones	in lateral suffaces of simple and sectioned solids – Fristis, pyramids (Jynn	uers									
	ISOMETRIC AND PERSPECTIVE PROJECTIONS			6								
Drinciples of is		lide	200	0	<u>+ 1 2</u>							
truncated solid	one the projection - isometric scale -isometric projections of simple sc	nius	anu sin									
simple vertical	positions - Perspective projection of simple solids-Prisms pyram	uide Jeci	and	С	05							
cylinders by vis	sual ray method	iluo	and									
	τοτλι	- 0			פחו							
TEXT BOOKS					00							
1 Nataroj	an K.V. "A text book of Engineering Granhics". Dhanalakehmi Buhli	shor	C	hon	nei							
Twenty	Ninth Edition 2016		о, с		nai,							
2. Venudo	pal K. and Prabhu Raja V. "Engineering Graphics" New Age Internation	onal	(P)	imi	ted							
2011.			· /		,							

REFERENCE BOOKS																	
1.	. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.														53rd		
2.	Ba	sant	Agarw	al and	d Aga	rwal (C.M., '	"Engin	eering	Draw	ving",	Tata	McGra	w Hill	Publi	shing	
	Со	mpan	y Limit	ted, Ne	ew Del	lhi, 200	08.									_	
3.	Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore,														alore,		
	2018.																
4.	Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an													h an			
	introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy													nomy			
	Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.																
5.	5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New														New		
	Delhi, 2015.																
6.	Sh	ah M.	B., and	d Rana	a B.C.,	"Engi	neerin	g Drav	ving", I	Pearso	on, 2nd	Editio	on, 200)9.			
COUR	RSE	ουτα	OME	S													
Upon	con	npleti	on of	the co	ourse,	stude	nts wi	ll be a	ble to								
CO1	Un	dersta	and the	e funda	amenta	als and	d stand	dards o	of Engi	neerin	g grap	hics					
CO2	Pe	rform	freeha	Ind ske	etching	g of ba	sic geo	ometri	cal cor	nstruct	ions ar	nd mu	ltiple v	iews of	f objec	ts	
CO3	Un	dersta	and the	e conc	ept of	orthog	raphic	projec	ctions (of lines	s and p	lane	surface	s			
CO4	Dra	aw the	e proje	ctions	of sec	tion of	solids	and d	levelop	ment	of surf	aces					
CO5	Vis	ualize	e and t	o proje	ect isoi	metric	and pe	erspec	tive se	ections	of sim	ple so	olids				
					MAP	PING	OF CO	Ds WI	ГН РО	s AND	PSO s	5					
													PRO	GRAM	SPEC	CIFIC	
COs	5			ł	ROG		JUIC	OME2	(POS)				OUTCOMES (PSOs)				
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1		3	2	1	2	1	1	-	-	3	3	2	3	1	1	1	
CO2		3	1	2	2	1	1	-	-	3	3	2	3	1	1	1	
CO3		3	1	1	3	1	1	-	-	3	3	2	3	1	1	1	
CO4		3	1	1	3	1	1	-	-	3	3	2	3	1	1	1	
CO5 3 1 2 3 1 1 3									3	3	2	3	1	1	1		
GE110)7	PYTHON PROGRAMMING LABORATORY	L	Т	Ρ	С											
-------	------------------	--	---------	-------	-------	------											
		Common for all branches of B.E. / B. Tech Programmes	0	0	4	2											
OBJE	CTIVES																
*	To wri	te, test, and debug simple Python programs.															
*	To imp	plement Python programs with conditionals and loops.															
*	Use fu	nctions for structuring Python programs.															
*	Repre	sent compound data using Python lists, tuples, and dictionaries.															
*	Read	and write data from/to files in Python.															
	OF EXP	ERIMENTS															
1.	Write	an algorithm and draw flowchart illustrating mail merge concept.															
2.	Write techni	an algorithm, draw flowchart and write pseudo code for a real life or s cal problems	scienti	ic or													
3.	Scient	ific problem-solving using decision making and looping.			С	01											
	•	Armstrong number, palindrome of a number, Perfect number.															
4.	Simple	programming for one dimensional and two-dimensional arrays.															
	•	Transpose, addition, multiplication, scalar, determinant of a matrix															
5.	Progra	am to explore string functions and recursive functions.															
6.	Utilizir	g 'Functions' in Python															
	٠	Find mean, median, mode for the given set of numbers in a list.															
	٠	Write a function dups to find all duplicates in the list.															
	•	Write a function unique to find all the unique elements of a list.			C	02											
	٠	Write function to compute gcd, Icm of two numbers.															
7.	Demo	nstrate the use of Dictionaries and tuples with sample programs.															
8.	Impler	nent Searching Operations: Linear and Binary Search.															
9.	To sor	t the 'n' numbers using: Selection, Merge sort and Insertion Sort.															
10.	Find th	ne most frequent words in a text of file using command line arguments.															
11.	Demo	nstrate Exceptions in Python.			C	03											
12.	Applic	ations: Implementing GUI using turtle, pygame.															
		тот	AL: 6	0 PE	RIO	DS											
REFEF	RENCE	BOOKS															
1.	Reem Press,	a Thareja, Python Programming: Using Problem Solving Approach, 2019	Oxfor	d Ur	niver	sity											
2.	Allen I Updat	 Downey, "Think Python: How to Think Like a Computer Scientist ed for Python 3, Shroff/O'Reilly Publishers, 2016. 	", Sec	ond	Editi	on,											
3.	Shroff	"Learning Python: Powerful Object-Oriented Programming; Fifth edition	n, 201:	3.													
4.	David 2009.	M.Baezly "Python Essential Reference". Addison-Wesley Profession	al; Fo	urth	editi	on,											
5	David	M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 20	13)														

WEB REFERENCES

1. http://www.edx.org

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1Develop simple console applications through python with control structure and functionsCO2Use python built in data structures like lists, tuples, and dictionaries for representing compound
data.

CO3 Read and write data from/to files in Python and applications of python.

MAPPING OF COs WITH POs AND PSOs

COs				PRC	GRA	MOU	тсо	MES	(POs)	1			PROGRAM SPECIFIC OUTCOMES (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2			
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2			
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2			

BS1108	PHYSICS AND CHEMISTRY LABORATORY	L	Τ	Ρ	С
	(Common to all branches of B.E. / B. Tech Programmes)	0	0	4	2
OBJECT	TVES				1
The stud	ents will be trained to perform experiments to study the following.				
♦ Т	he Properties of Matter				
∻ T	he Optical properties, Characteristics of Lasers & Optical Fibre				
∻ E	lectrical & Thermal properties of Materials				
∻ E	nable the students to enhance accuracy in experimental measurements.				
∻ T	o make the student to acquire practical skills in the determination of water qu	lality	para	met	ters
th	nrough volumetric analysis				
✤ Ir	nstrumental method of analysis such as potentiometry, conductometry and pH	metry	у		
LIST OF	EXPERIMENTS – PHYSICS				
(A minim	um of 5 experiments to be performed from the given list)				
1. D	etermination of Young's modulus of the material of the given beam by No	n-uni	form		
b	ending method.				
2. D	etermination of Young's modulus of the material of the given beam by	/ uni	form		· ^ 4
b	ending method.				,UI
3. D	etermination of rigidity modulus of the material of the given wire usin	g tor	sion		
р	endulum.				
4. D	petermination of wavelength of mercury spectra using Spectrometer and gratir	ıg.			
5. D	etermination of dispersive power of prism using Spectrometer.				
6. (a	a) Determination of wavelength and particle size using a laser.				
(t	b) Determination of Numerical and acceptance angle of an optical fibre.			С	:02
7. D	etermination of energy band gap of the semiconductor.				
8. D	etermination of coefficient of thermal conductivity of the given bad conductivity	tor u	ising		
L	ee's disc.		- 3		
DEMON	STRATION EXPERIMENT				
1. D	etermination of thickness of a thin sheet / wire – Air wedge method			C	:01
	EXPERIMENTS - CHEMISTRY				
	um of 6 experiments to be performed from the given list)				
	etermination of chloride content of water sample by argentometric method				
1. D	stimation of conner content of the given solution by lodometry			C	03
2. L	sumation of copper content of the given solution by rodometry.				
3. D	etermination of strength of gride in a mixture of aside using productivity mate				
4. D	retermination of strength of acids in a mixture of acids using conductivity meter	r			
5. E	stimation of iron content of the given solution using potentiometer.			с	:04
6. D	etermination of molecular weight of polyvinyl alcohol using Ostwald viscomet	er.			
7. C	conductometric titration of strong acid vs strong base.				
8. E	stimation of HCI using Na_2CO_3 as primary standard and determination of al	kalini	ty in		
W	vater sample.			C	:O ^r
9. D	etermination of total, temporary & permanent hardness of water by EDTA me	thod.			
10. D	etermination of DO content of water sample by Winkler's method.			1	

1	Ectimo	tion	of irc	n	otont	of th		ator 4	omel			otroph	otomoto	r (1 10	
1.	Dhona	nthroli	no/th		nate	01 lí methr	ie wa vd)		sampi	e usir	ig spe	ectropr	lotomete	er (1,10-	CO3
0	Fatima			nocya											0.05
2.	Estima	ation of	SOGI	um an	a pot	assiur	n pre	sent II	n wate	er using	g flame	e photo	ometer.		005
		DOOL	(0)										ΤΟΤΑ	L: 60 PE	RIODS
REFE	RENCE	ROOI	<u>KS</u>	0.0		. . "					<u> </u>			0047	
1.	Bhatta	cnarya	i, D.K	. & PC	onan "⊑∽	1, I.	Engin	eerin	g Pny: " Dh	SICS . (Dationa	Univer	Sity Pres	SS, 2017.	
Z.	Gaur, I	К.К. & ./ р.//	Gupt	a, S.L	. En(gineer "⊏ະ		nysics	S.DN	anpat	Rai Pu	Iblishei	(S, 2012.	0040	
3. ⊿	Pande	y, D.N.	. & Cr		eai, 5 "୮ຉ	. Eng	jineer ring	Ing P	nysics	3. ∪en ₄⁊ th	gage i	_eamir	ig inula,	2013. Dub Co	Nou
4.	P.C.Ja Dolhi (111, 1VI 2015)	Unica	Jaili	, בוו	ginee	nng	Chen	iisti y	17	EU. L	лапра	al Rai r	-up. Co.	, new
5		ara S	S U	mare	"A te	xt hor	nk of F	=nain	eerinc	ı Chen	nistrv"	S Cha	nd & Co	Itd Nev	w Delhi
0.	(2020)	uiu, O	.0. 01	narc,	11 10			_ngin	conne		nou y	0.0110			N Denn
COUR	SE OU	TCOM	ES												
Upon	comple	tion o	of the	cours	se, st	udent	s will	be a	ble to)					
CO1	Able to	unde	rstand	the c	conce	pt abo	out the	e basi	c prop	perties	of mat	ter like	stress,	strain an	d types
	of mod	luli													
	Able t	o und	lersta	nd th	e coi	ncept	of o	ptics	like	reflect	ion, re	efractic	on, diffra	iction by	using
	spectro	ometer	⁻ grati	ng.											
CO2	Able to	o unde	rstand	d the t	herm	al pro	pertie	s of s	olids,	specif	ic hea	t and s	ome mo	dels for s	specific
	heat ca	alculati	ion.												
	Able to	o unde	erstan	d the	work	ing pi	rincipl	e of l	aser	compo	nents	and w	orking o	of differer	nt laser
	system	۱.													
	Able to	unde	rstand	the p	heno	meno	n of li	ght, a	pplica	ations of	of fibre	optics			
CO3	Able to	unde	rstanc	the c	once	pt of c	letern	nining	the p	H valu	e by u	sing pl	H meter.		
	Able to	o unde	rstan	d the	conce	ept at	oout t	he an	nount	of chl	oride p	present	t in the g	given sar	nple of
	water.														
CO4	Able to	unde	rstand	the c	conce	pt of c	letern	nining	the e	mf val	ues by	using	potentio	meter	
	Able to	o unde	erstan	d the	conc	ept a	bout	the m	neasu	rement	t of co	onducta	ance of s	strong ad	cid and
	strong	base b	by usi	ng co	nduct	ivity n	neter.								
CO5	Able to	undei	rstand	the a	amour	nt of d	issolv	ed ox	ygen	preser	nt in th	e wate	r.		
	Able to	undei	rstand	the c	conce	pt of e	estima	ation c	of hard	dness (of wate	er by E	DIA mei	thod.	
	Able to	unde	rstand	the c	conce	pt of e	estima	ation c	of alka	linity ir	n wate	r samp	le.		
				Μ	APPI	NG O	F CO	s WI	TH PC	os ane	D PSO	S			
• •				PRO	GRA	мои	тсоі	MES ((POs)				PROG		ECIFIC
COs			1	1					, ,				OUTC	OMES (F	'SOs)
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2	2
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	2	
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	1	2
														-	

HS1201 PROFESSIONAL ENGLISH L T	Р	С
Common for all branches of B.E. / B. Tech Programmes 3 0	0	3
OBJECTIVES		
The Course prepares second semester engineering and Technology students to:		
Develop strategies and skills to enhance their ability to read and comprehend		
Engineering and technology texts.		
 Foster their ability to write convincing job applications and effective reports. 		
Develop their speaking skills to make technical presentations, participate in group discuss	sio	ns.
 Strengthen their listening skill which will help them comprehend lectures and talks in the 	r ar	reas
of specialization.		
UNIT I INTRODUCTION TO PROFESSIONAL ENGLISH		9
Listening: Listening to technical talks with comprehension tasks - Speaking - conversation		
methods in real life occurrences using expressions of different emotions and imperative		
usages - Reading - reading short technical texts from journals- newspapers- Writing- purpose		:01
statements - extended definitions - writing instructions - checklists-recommendations-		
Vocabulary Development- technical vocabulary Language Development – tenses- subject verb		
agreement - compound words.		
UNIT II READING AND STUDY SKILLS	_	9
Listening-Listening Comprehension of a discussion on a technical topic of common interest by		
three or four participants (real life as well as online videos)Speaking – describing a process-		
Reading: Practice in chunking and speed reading - Paragraphing- Writing- interpreting charts,	C	202
graphs- vocabulary Development: Important foreign expressions in Use, nomonyms,		
nomophones, nomographs- easily confused words Language Development- Impersonal		
	Τ_	9
Listening – listening to conversation – effective use of words and their sound aspects,		
stress, intonation & pronunciation - Speaking – mechanics of presentations -Reading:		
Reading longer texts for detailed understanding. (GRE/IELTS practice tests); writing-	C	203
bescholing a process, use of sequence words- vocabulary Development- sequence words-		
embedded sentences and Ellinsis		
UNIT IV REPORT WRITING	Т	9
Listening – Model debates & documentaries and making notes. Speaking – expressing		
agreement/disagreement, assertiveness in expressing opinions-Reading: Technical		
reports, advertisements and minutes of meeting - writing- email etiquette- job application -	C	204
based esseve Vessbulary Development, finding suitable evolution persphericing Language		
Davelopment, elevence, if conditionals		
UNIT V GROUP DISCUSSION AND JOB APPLICATIONS	Т	9
Listening: Extensive Listening. (radio plays, rendering of poems, audio books and others)		
speaking -participating in a group discussion - Reading: Extensive Reading (short stories,		
Neiting a letter (conding on empile to the Editor, course and effort contents and survey-	C	-05
Development verbal applagion Language Development reported appach		

TEXT F	BOOKS	s													
1.	Board	of edi	tors.	Fluen	cy in	Engli	sh A	Cours	se bo	ok for	Engine	eering	and Tec	hnology.	Orient
	Blacks	swan, H	Hydera	abad:	2020										
2.	Barun	K Mitra	a, Effe	ective	Tech	nical	Comn	nunica	ation (Dxford	Unive	rsity Pr	ress : 20	06.	
3.	Sudha	irshana	a.N.P	and	Save	eetha	. C.	Engli	ish fo	or Teo	chnical	Com	municati	on. Car	nbridge
	University Press: New Delhi, 2016.														
REFER	RENCE BOOKS														
1.	Rama Practic	n, Me ce Oxf	enaks ord U	shi ar nivers	nd Sl sity Pr	harma	a, Sa New F	ingeet Delhi 2	tha- [·] 2014	Techni	cal C	ommui	nication	Principle	es and
2	Kumai	. Sure	sh F	Fnai	neerir	na Ene	alish.	Orien	t Blac	kswan	· Hvde	rabad	2015		
3.	Booth-	L. Dia	na. Pr	oiect	Work	. Oxfc	ord Ur	niversi	itv Pre	ess. Ox	ford: 2	2014.			
4.	Gruss	endorf.	Mario	on. Er	nalish	for P	resen	tation	s. Oxf	ord Ur	niversit	v Pres	s. Oxfor	d: 2007	
5.	Means	s, L. T	homa	s and	d Elai	ne La	angloi	s, En	alish	& Con	nmunio	cation	For Coll	eges. C	engage
	Learni	ng,US	A: 200)7.			0		0					0	00
6.	Carolii	ne Mey	/er & l	Bringi	dev,	Comr	nunic	ating	for Re	sults C	Dxford	Univer	sity Pres	s: 2021.	
7.	 Aruna Koneru, Professional Speaking Skills, Oxford University Press :2015. 														
COURS															
Upon o	pon completion of the course, students will be able to														
CO1	Speal using	< clear approp	ly, co oriate	onfide comn	ntly, o nunica	comp ative s	rehen strate	sibly, gies.	and	comm	unicate	e with	one or	many li	steners
CO2	Write vocab	cohes oulary r	ively ange,	and orga	coher nizing	ently their	and f ideas	flawle logic	ssly a ally oi	avoidin n a top	g grar ic.	nmatic	al errors	s, using	a wide
CO3	Read	differe	nt ger	nres o	f texts	s ado	pting	variou	is rea	ding st	rategie	es.			
CO4	Listen	/view a	and co	ompre	hend	differ	ent sp	ooken	disco	ourses/	excerp	ots in d	ifferent a	accents	
CO5	Identi	fy topic	s and	l form	ulate	quest	ions f	or pro	ductiv	/e inqu	iiry				
		<i>y</i> 1		м	APPI	' NG O	F CO	s WI	ГН РС)s AN[) PSO	s			
												-	PROG	RAM SP	ECIFIC
COs				PRC	GRA	MOL	JTCO	MES	(POs)				OUTC	OMES (PSOs)
000	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	2	3	-	-	2	-	2
CO2	-	1	-	2	-	-	-	-	-	3	-	-	2	-	2
CO3	-	2	-	3	-	-	-	-	-	2	-	-	2	-	1
CO4	-	-	-	-	-	-	-	-	2	2	-	-	2	-	2
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	-	2

OBJEC [*]	Common for AI-DS and AI-ML TIVES To test the consistency and solve the system of linear equations To find the basis and dimension of vector space To obtain the matrix of linear transformation and its eigenvalues and eigenvectors To find orthonormal basis of inner product space and find least square approxima To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	4 s atior ecol	0 n mpos	0 sitio	4
OBJEC 7 7 7 7 7 7 7 1 7 7	TIVES To test the consistency and solve the system of linear equations To find the basis and dimension of vector space To obtain the matrix of linear transformation and its eigenvalues and eigenvectors To find orthonormal basis of inner product space and find least square approximat To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	s atior	n mpo:	sitio	
 1 1	To test the consistency and solve the system of linear equations To find the basis and dimension of vector space To obtain the matrix of linear transformation and its eigenvalues and eigenvectors To find orthonormal basis of inner product space and find least square approxima To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	s atior eco	n mpo:	sitio	
 1 1 1 1 1 1 1 Matrices eliminati 	To find the basis and dimension of vector space To obtain the matrix of linear transformation and its eigenvalues and eigenvectors To find orthonormal basis of inner product space and find least square approxima To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	s atior eco	n mpo:	sitio	
 1 1 1 1 1 1 Matrices eliminati 	To obtain the matrix of linear transformation and its eigenvalues and eigenvectors To find orthonormal basis of inner product space and find least square approxima To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	s atior eco	n mpo:	sitio	
 ♦ 1 ♦ 1 UNIT I Matrices eliminati 	To find orthonormal basis of inner product space and find least square approxima To find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	atior eco	n mpo:	sitio	
♦ 1 UNIT I Matrices eliminati	o find eigenvalues of a matrix using numerical techniques and perform matrix de MATRICES AND SYSTEM OF LINEAR EQUATIONS	eco	mpo	sitio	
UNIT I Matrices eliminati	MATRICES AND SYSTEM OF LINEAR EQUATIONS		•		n.
Matrices eliminati					12
eliminati	- Row echelon form - Rank - System of linear equations - Consistency -	Ga	uss		
	on method - Gauss Jordon method.			C	D1
UNIT II	VECTOR SPACES				12
Vectors	naces Subspaces Linear combinations Linear independence and linear depen	odor	200	\square	
Bases a	nd dimensions	luei	ice,	CC	D 2
					40
				\square	12
Linear tr	ansformation - Rank space and null space - Rank and nullity - Dimension the	eroe	em -		
Matrix r	epresentation of linear transformation - Eigenvalues and eigenvectors of	r IIr	near	CC	23
transforr					
UNIT IV	INNER PRODUCT SPACES				12
INNER	product and norms - Properties - Orthogonal, Orthonormal vectors - Gram S	Schr	midt	C	D 4
orthonor	malization process - Least square approximation				
UNIT V	EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION				12
Eigen va	alue Problems: Power method, Jacobi rotation method - Singular value decompo	ositi	on -	C(05
QR deco	omposition.				55
	TOTAL	: 45	5 PE	RIOI	DS
TEXT B	OOKS				
1. F	Friedberg S.H, Insel A.J. and Spence L, Linear Algebra, Fifth edition, Pearson, 20	018			
2. E	Burden R. and Faires J.D. Numerical Analysis, tenth edition, Brooks/Cole, 2015.				
3. 5	Strang G, Linear algebra for everyone, Wellesley Cambridge press, 2020.				
REFERE	ENCE BOOKS				
1. 5	Seymour Libschutz and Marc Lipson, Linear Algebra, Sixth edition, McGraw	Hill	Edu	icati	on
b	ndia private limited, New Delhi, 2017.				
2. ly	yengar S.R.K. and Jain R.K., Numerical Methods, Third edition, New age	e ir	ntern	atior	nal
p	publications, 2012.				
3. k	Kumaresan S, Linear Algebra - A geometric approach, Prentice Hall of Indi	ia, I	New	Del	lhi,
F	Reprint, 2010.				
4. 5	Sundarapandian V, Numerical Linear Algebra, Prentice Hall of India, New Delhi,	200	8.		
5. E C	Bernard Kolman and David R. Hill, Introductory Linear Algebra, Pearson Ed Delhi, First Reprint, 2009.	uca	tions	, Ne	ew

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Test the consistency and solve the system of linear equations

CO2 Find the basis and dimension of vector space

CO3 Obtain the matrix of linear transformation and its eigenvalues and eigenvectors

CO4 Find orthonormal basis of inner product space and find least square approximation

CO5 Determine eigen values of a matrix using numerical techniques and perform matrix decomposition

				M	APPI	NG O	F CO	s WI	TH PC	os ani	D PSO	S			
COs				PRC	OGRA	MOL	ITCO	MES	(POs)				PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	2	-	-	1	1	3	3	3	3
CO2	3	3	2	3	2	2	1	-	-	-	-	2	2	2	2
CO3	3	2	2	2	2	1	1	-	-	-	-	1	2	2	2
CO4	3	3	3	2	2	2	1	-	-	-	-	1	2	2	2
CO5	3	3	3	2	2	2	1	-	-	-	-	1	2	3	3

PH1252	PHYSICS FOR INFORMATION SCIENCE	L	Т	Ρ	С
	Common for CSE, IT, AI-DS and AI-ML	3	0	0	3
OBJECTIVES					<u> </u>
To acquire	uire knowledge on the electron transport properties				
 To und 	erstand the essential principles of semiconductor device				
 To drive To have 	e the necessary understanding in optical properties of materials				
	the principles of magnetic materials and its applications				
 To gras To und 	p the principles of Magnetic materials and its applications.				
	ELECTRICAL PROPERTIES OF MATERIALS				٩
Classical free	electron theory - Expression for electrical conductivity - Thermal conductivity	duct	ivitv		3
	Viedemann-Franz law - Success and failures - electrons in metals - P	artic	lo in		
expression - v	vieuentarin-Franziaw - Success and failures - electrons in metals - Fr			~	01
a three dimen	sional box - degenerate states - Fermi- Dirac statistics - Density of energy	jy si	ales		01
- Electron in p	eriodic potential - Energy bands in solids - Electron effective mass - co	nce	pt of		
nole - Applicati	ons of low resistive and high resistive materials.				
				1	9
Intrinsic semi	conductors - Energy band diagram - direct and indirect bai	nd	gap		
semiconductor	s - carrier concentration in intrinsic semiconductors - extrinsic semicond	duct	ors -		
carrier concent	tration in n-type & p-type semiconductors - variation of carrier concentra	tion	with	с	02
temperature -	variation of Fermi level with temperature and impurity concentration	- ca	rrier		
transport in se	miconductors - Hall effect and devices - Ohmic contacts – Schottky	dio	de -		
Semiconductin	g polymers.				
UNIT III	MAGNETIC PROPERTIES OF MATERIALS				9
Magnetism in	materials - magnetic dipole moment - magnetic permeability and susce	ptibi	lity -		
Microscopic o	classification of magnetic materials : diamagnetism - paramagn	etisi	m -		
ferromagnetisr	n – antiferromagnetism - ferrimagnetism - Curie temperature - Domain	The	ory -	C	02
M versus H b	ehavior - Hard and soft magnetic materials - examples and uses - M	Лаgı	netic		03
principle in co	mputer data storage - Magnetic hard disc - Spintronics - GMR Sensc	or (C	Siant		
Magnetoresista	ance) - TMR (Tunnel Magnetoresistance)				
UNIT IV	OPTICAL PROPERTIES OF MATERIALS			1	9
Classification	of optical materials - carrier generation and recombination proc	esse	es -		<u> </u>
Absorption em	ission and scattering of light in metals, insulators and semiconductors (c	conc	epts		~ .
only) - photo (current in a P-N diode - solar cell - LED - Organic LED - p-i-n Photo	diod	les -	C	04
Avalanche Pho	todiodes -Optical data storage techniques- Holography - applications.				
UNIT V	NANO DEVICES				9
Electron densi	ty in bulk material - Size dependence of Fermi energy - Quantum confir	nem	ent -		<u> </u>
Quantum strue	ctures - Density of states in quantum well, quantum wire and quan	tum	dot		
structure - Ba	nd gap of nanomaterials - Tunneling: single electron phenomena an	d si	ngle	_	
electron transis	stor - Quantum dot laser - Ballistic transport - Carbon nanotubes: proper	ties	and	C	05
applications -	Material Processing by chemical vapor deposition and Laser ablation n	neth	od -	1	
Graphene: pro	perties and applications.	-			
, F. •	TOTAL	: 4	5 PE	l Rio	DS

TEXT	TEXT BOOKS															
1. 2. 3. 4.	Jas Do 20 ⁷ Sal and Kas	Jasprit Singh, —Semiconductor Devices: Basic Principles, Wiley 2012. Donald Neaman, Dhrubes Biswas, Semiconductor Physics and Devices (SIE), 4th Edition, 2017 Salivahanan,S., Rajalakshmi,A., Karthie,S., Rajesh,N.P., "Physics for Electronics Engineering and Information Science", McGraw Hill Education (India) Private Limited, 2018. Kasap, S.O. —Principles of Electronic Materials and Devices, McGraw-Hill Education, 2007. Kittel C. – Introduction to Solid State Physicall, Wiley, 2005.														
5.	Kitt	Kittel, C. —Introduction to Solid State PhysicsII. Wiley, 2005.														
1. 2. 3.	 KENCE BOOKS Garcia, N. & Damask, A. —Physics for Computer Science Students. Springer-Verlag, 2012. Hanson, G.W. —Fundamentals of Nanoelectronics. Pearson Education, 2009. Rogers, B., Adams, J. & Pennathur, S. —Nanotechnology: Understanding small systems, CRC press, 2014. 															
COUR	RSE OUTCOMES															
Upon	n completion of the course, students will be able to															
CO1	Gain knowledge on classical and quantum electron theories, and energy band structures.															
CO2	Acquire knowledge on basics of semiconductor physics and its applications in various															
	Dev	vices	•													
CO3	Get	t kno	wledg	e on	magn	etic p	ropert	ies of	mate	rials a	and the	eir appl	lication	is in data	a storage	
CO4	Hav	ve the	e nec	essar	y und	erstar	nding	on the	e func	tionin	g of op	tical m	naterial	s for		
	Opt	toele	ctroni	cs.												
CO5	Unc	derst	and th	ne bas	sics of	f quar	ntum s	structu	ures a	nd the	eir app	licatior	ns in ca	arbon ele	ectronics	
					М	APPI	NG O	F CO	s WI1	ГН РС)s AND	PSO	s			
COs	5				PR	OGR/		JTCO	MES	(POs	;)			PROGI OUTC	RAM SP OMES (I	ECIFIC PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	2	2	1	2	1	1	1	2	1	3	2	2
CO2		3	3	1	1	3	1	1	1	2	2	2	1	2	2	3
CO3		3	3	1	1	2	2	1	1	1	1	1	2	2	2	2
CO4		3	3	3	2	2	1	1	1	2	2	1	3	3	3	3
CO5		3	3	3	2	3	1	1	1	2	1	2	3	3	3	3

	ENVIRONMENTAL SCIENCE AND ENGINEERING	L	T F	C	С
	Common for all Branches of B.E. / B. Tech Programmes	3	0 0)	3
OBJECTIVES					
 To study 	the inter relationship between living organism and environment.				
 To appr 	eciate the importance of environment by assessing its impact on the	hun	nan v	vor	:ld;
envision	the surrounding environment, its functions and its value.				
To find	and implement scientific, technological, economic and political	SO	lutior	าร	to
environr	nental problems.				
To study	the integrated themes and biodiversity, natural resources, pollution cor	ntrol	and v	was	ste
manage	ment.				
To stud	y the dynamic processes and understand the features of the earth	's in	terior	r a	nd
surface.					
UNIT I	ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY				9
Definition. scor	be and importance of environment – Need for public awareness –	Rol	e of		
Individual in En	vironmental protection – Concept of an ecosystem – Structure and funct	ion c	of an		
ecosystem – P	oducers, consumers and decomposers – Energy flow in the ecosystem	า — F	Food		
chains, food w	ebs and ecological pyramids – Ecological succession – Types, char	acter	ristic		
features. struct	ure and function of forest, grass land, desert and aquatic (ponds, lake	s. riv	/ers.		
oceans, estuari	es) ecosystem.	-,	,		
Biodiversity – [efinition – Genetic species and ecosystem diversity – Value of biodiv	ersit	v _	CC	D1
	se productive use social ethical aesthetic and option values – Biodive	areity	y /at		
dobal national	and local levels - India as a mera diversity nation - Hot spots of hiodiv	/oreit	- u		
Threats to biod	iversity – Habitat loss poaching of wild life human-wildlife conflicts –	Wilc	y Ilife		
protection act a	nd forest conservation act – Endangered and endemic species – Conservation	ervat	tion		
of biodiversity –	In-situ and ex-situ conservation of biodiversity	Jirtat			
					9
Definition – Ca	uses, effects and control measures of: (a) Air pollution (b) Water r	ollut	ion		
(c) Soil pollutio	(a) Marine pollution (e) Noise pollution (f) Thermal pollution (g)	Nucl	ear		
hazards – Solic	I waste management: causes, effects and control measures of municip	al so	olid		
wastes - Proble	ems of e-waste – Role of an individual in prevention of pollution – Pollution	on ca	ase	CC) 2
studies – Disas	ter management – Floods, earthquake, cvclone, tsunami and landslides	– Fi	ield		
study of local po	olluted site – Urban / Rural / Industrial / Agricultural.		_		
	NATURAL RESOURCES				9
Forest resourc	es: Uses and over-exploitation – Deforestation – Case studies –	Tim	ber	I	
extraction, mini	ng, dams and their effects on forests and tribal people – Water resource	s – l	Jse		
and overutilizat	on of surface and ground water, floods, drought, conflicts over water -	- Dar	ms:		
benefits and pr	oblems – Mineral resources: Uses and exploitation – Environmental ef	fects	s of		
extracting and u	using mineral resources – Case studies – Food resources: World food pr	roble	ms		
- Changes cau	sed by agriculture and overgrazing – Effects of modern agriculture: fe	ertiliz	er–		
J I	ms, water logging, salinity – Case studies – Energy resources: Growing	ene	rgy	CC	73
pesticide proble	able and non renewable energy sources – Use of alternate energy so	urce	s –		
pesticide proble needs – Renew	_ Land resources: Land as a resource _ Land degradation man i	induk	bec		
pesticide proble needs – Renew Case studies -	- Land resources. Land as a resource - Land degradation, man r	nuuu	Jeu		
pesticide proble needs – Renew Case studies - landslides, soil	erosion and desertification – Role of an individual in conservation of	natu	ural		
pesticide proble needs – Renew Case studies - landslides, soil resources – Eq	erosion and desertification – Role of an individual in conservation of uitable use of resources for sustainable lifestyles – Field study of local	natu area	ural		

UNIT	V SOCIAL ISSUES AND THE ENVIRONMENT	9
From	unsustainable to sustainable development – Urban problems related to energy – Water	
conse	rvation, rain water harvesting, watershed management – Resettlement and rehabilitation	
of peo	ple; its problems and concerns, case studies – Role of non-governmental organization –	
Enviro	nmental ethics – Issues and possible solutions – Climate change – Global warming –	
Acid ra	ain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland	CO4
reclam	nation – Consumerism and waste products – Principles of Green Chemistry –	004
Enviro	nment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention	
and co	ontrol of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement	
machi	nery involved in environmental legislation- Central and state pollution control boards-	
Nation	al Green Tribunal – Public awareness.	
UNIT	V HUMAN POPULATION AND THE ENVIRONMENT	9
Popula	ation growth – Variation among nations – Population explosion – Family welfare	
progra	Imme – Environment and human health – Human rights – Value education – HIV / AIDS	CO5
– CO\	/ID 19 – Women and child welfare – Role of information technology in environment and	000
humar	health – Case studies	
	TOTAL : 45 PER	IODS
TEXT	BOOKS	
1.	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New (2014).	Delhi,
2.	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd en	dition,
	Pearson Education, (2004).	
3.	Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", A	irwalk
	Publications, Chennai, (2018).	
REFE	RENCE BOOKS	
1.	Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (20	07).
2.	Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt,	Ltd,
	Hydrabad, (2015).	
3.	G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning	India
	Pvt.Ltd,Delhi, (2014).	
4.	R. Rajagopalan, 'Environmental Studies-From Crisis to Cure', Oxford University Press, (20	005).
5.	Anubha Kaushik , C.P. Kaushik, "Perspectives in Environmental Studies", New	Age
	International Pvt. Ltd, New Delhi, (2004).	
6.	Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).	
COUR	SE OUTCOMES	
Upon	completion of the course, students will be able to	
CO1	To obtain knowledge about environment, ecosystems and biodiversity.	
CO2	To take measures to control environmental pollution.	
CO3	To gain knowledge about natural resources and energy sources.	
CO4	To find and implement scientific, technological, economic and political solution	ns to
	environmental problems.	
CO5	To understand the impact of environment on human population.	

MAPPING OF COs WITH POs AND PSOs

COs				PR	OGR/	AM O	итсс	MES	(POs	5)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1	2
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1	2
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2	3

BE1251

BASIC ELECTRICAL, ELECTRONICS AND MEASUREMENT ENGINEERING

Common for CSE, IT, AI-DS & AI-ML

3	0	0	3

С

OBJECTIVES

To learn the fundamental laws, network theorems and analyse the electric circuits.

- To study the basic principles of electrical machines and their performance.
- To study the fundamentals of power systems.
- To learn the characteristics of various electron devices and Op Amp integrated circuit.
- To understand the principle and operation of measuring instruments and transducers.
- **ELECTRIC CIRCUITS ANALYSIS** UNIT I 9 Ohms Law, Kirchhoff's Law-Instantaneous power - Series and parallel circuit: analysis of resistive, capacitive and inductive network, star delta conversion, Nodal analysis and mesh analysis. Network theorems: Thevenin's theorem, Norton's theorem, superposition theorem CO1 and maximum power transfer theorem. Three phase ac supply -Instantaneous power, Reactive power and apparent power. UNIT II **ELECTRICAL MACHINES** 9 DC and AC ROTATING MACHINES: Types, Construction, principle, EMF and torgue equation, application, Speed Control. Basics of Stepper Motor and Brushless DC motors. Transformers-CO2 Introduction, types and construction, working principle of Ideal transformer, EMF equation, All day efficiency calculation. UNIT III FUNDAMENTALS OF POWER SYSTEM 9 Structure of power system. Sources of electrical energy - Non-renewable, Renewable-Storage systems: Batteries-Ni-Cd, Pb -Acid and Li-ion, SOC (State of Charge), DOD (Depth of CO3 Discharge)Characteristics. Utilization of electrical power - DC and AC load applications. -Electric circuit Protection-need for earthing, fuses and circuit breakers. ELECTRON DEVICES AND INTEGRATED CIRCUITS UNIT IV 9 PN Junction-VI Characteristics of Diode, Zener diode, Rectifiers, Zener voltage regulator. Transistor configurations – CE amplifier - RC and LC oscillators. Op Amps – Basic **CO4** characteristics and its applications. UNIT V MEASURING INSTRUMENTS AND TRANSDUCERS 9 Characteristic of measurement-errors in measurement - Principle and working of indicting instrument- Moving Coil meter, Moving Iron meter, Energy meter and watt meter, Cathode Ray CO5 Oscilloscope -- Transducers, thermo-electric, RTD, Strain gauge, LVDT, LDR, and piezoelectric transducer. TOTAL: 45 PERIODS

TEXT BOOKS

- 1. D.P. Kotharti and I.J Nagarath, Basic Electrical and Electronics Engineering, Mc Graw Hill, fourth Edition, 2019
- 2. M.S. Sukhija and T.K. Nagsarkar, Basic Electrical and Electronic Engineering, Oxford, 2016.

REFE	RE	NCE	BOOI	٨S												
1.	S.	B. La	l Seks	sena a	and K	austu	v Das	gupta	a, Fun	dame	nts of	Electri	cal Eng	gineering	l, Cambr	idge,
	20	016														
2.	В.	L The	eraja,	Funda	amen	tals of	Elec	trical	Engin	eering	g and E	Electro	nics. S	.Chand	& Co, 20	08.
3.	S.	K.Sal	hdev,	Basic	of El	ectrica	al Eng	gineer	ring, F	Pearso	on, 201	5				
4.	Jc	ohn Bi	rd, —	Elect	rical a	nd Ele	ectror	nic Pri	inciple	es and	d Techi	nology	ll, Four	th Editio	n, Elsevi	er,
	six	xth ec	lition,2	2017.												
5.	Μ	ittle,N	littal,	Basic	Elect	rical E	Engine	eering	j∥, 2no	d Editi	ion, Ta	ta Mc0	Graw-⊢	lill Editio	n, 2016.	
6.	C.	.L.Wa	dhwa	, —0	Gener	ation,	Dist	ributic	on an	d Ut	ilisatio	n of I	Electric	al Ener	gyll, Ne	w Age
	int	ternat	ional	pvt.lto	d.,200	3										
COUF	RSE	OUT	СОМ	ES												
Upon	col	mplet	ion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	At	oility t	o lear	n the	funda	menta	al law	s, the	orem	s of el	lectrica	al circu	its and	to analy	yze them	1
CO2	At	oility t	o und	erstar	nd the	basio	cons	structi	on an	d ope	rating	princip	le of d	c and ac	machine	€S.
CO3	At	oility t	o unc	lersta	nd the	e elec	trical	powe	er gen	eratio	n, ene	ergy sto	orage a	and utiliz	ation of	electric
	рс	ower.														
CO4	AŁ	oility t	o unc	lersta	nd the	e cha	racter	istics	of va	rious	electro	onic de	evices	and Op	Amp inte	egrated
	cir	rcuit.														
CO5	A	bility t	o unc	lersta	nd the	e princ	ples	and c	operat	ion of	meas	uring i	nstrum	ents and	transdu	cers.
					Μ	APPI	NG O	F CO	s WI	гн рс)s AN[D PSO	s			
										(DO-				PROG	RAM SP	ECIFIC
COs	5				PR	UGR/				(POs	5)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	1	1	1	2	3	2	1	2	3	1	2
CO2		3	3	3	3	1	1	1	2	3	2	1	2	3	1	2
CO3		3	3	3	3	1	1	1	2	3	2	1	2	3	1	2
CO4		3	3	3	3	1	1	1	3	3	3	1	3	3	1	3

CO5

CS1206	PROGRAMMING IN C	L	Т	Ρ	С
	Common for CSE, IT, AI-DS, AI-ML	3	1	0	3
OBJECT	/ES	1			
✤ To	develop C Programs using basic programming constructs				
✤ To	develop C programs using arrays, strings and functions				
✤ To	develop applications in C using pointers				
♦ То	develop applications in C using structures and union				
♦ То	develop applications using sequential and random-access file processing.				
	BASICS OF C PROGRAMMING				9
An overvi	w of C: History of C; Compiler Vs. Interpreter, Structure of a C Program, Co	mpili	ng a		
C Progra	: Basic data types: Modifiers. Variables: Type qualifiers. Storage class s	, pecif	iers:		
Constant	Enumeration Constants: Keywords: Operators: Precedence and Ass	ociat	ivitv:		
Expressio	s: Order of evaluation Type conversion in expression Casts: Inp	ut/Or	itout	C	;01
statemen	: Assignment statements Selection statements: Iteration statement	sl	umn		
statemen	: Expression statements: Pre-processor directives: Compilation process	J, U	ump		
	ARRAYS, STRINGS AND FUNCTIONS				9
Introducti	n to Arrays: Declaration. Initialization. Single dimensional array. Two dim	iensi	onal		
arrav. Arr	v manipulations: String operations: length, compare, concatenate, copy: F	uncti	ons:	c	:02
General f	rm of a function Eunction Arguments Built-in functions, return statement, R	ecurs	sion		-
	POINTERS				9
Pointers:	Declaring and defining pointers. Pointer operators. Pointer expression	· Po	inter		
assignme	t Pointer conversions Pointer arithmetic Pointer comparisons: Pointers an	d Arı			
Array of r	inters: Multiple indirection: Pointers to function: Problems with pointers: P	aran	ays. Notor	C	;03
nassing.	ass by value. Pass by reference	aran			
					0
Structure	Accessing structure members, structure accignments; Nested structures; De	intor	000		9
Structure	Accessing structure members, structure assignments, nested structures, PC	mer	anu		
Structure	Array of structures; Passing structures to functions: Passing structure m	empe	erto	C	:04
function,	assing entire structure to functions; Arrays in structures; Self-referential si	ructi	ires;		
Dynamic	hemory allocation; typedef statement, Union and Enumeration.				
	FILE PROCESSING	<u> </u>		1	9
File syste	n basics: File pointer, opening and closing a File; reading and writing c	hara	cter;		
working \	th String: fputs() and fgets(); rewind(); ferror(); fread() and fwrite(); Eras	ing 1	files;	c	:05
Types of	le processing: Sequential access; Random access: fprintf() and fscanf(), fse	ek()	and		
ftell(); Co	mand line arguments.				
	ΤΟΤΑ	_ : 4	5 PE	RIC	DS
TEXT BO	DKS				
1. He	bert Schildt, C The Complete Reference, Fourth Edition, McGraw-Hill.				
2. Re	ema Thareja, "Programming in C", Oxford University Press, Second Edition,	2016	5.		
3. Ke	nighan, B.W and Ritchie,D.M, -The C Programming languagel, S	Seco	nd	Edit	ion,

REFERENCE BOOKS

- 1. Paul Deitel and Harvey Deitel, -C How to Program, Seventh edition, Pearson Publication
- 2. Juneja, B. L and Anita Seth, -Programming in C, CENGAGE Learning India pvt. Ltd., 2011.
- 3. Pradip Dey, Manas Ghosh, -Fundamentals of Computing and Programming in C, First Edition, Oxford University Press, 2009.
- 4. Anita Goel and Ajay Mittal, -Computer Fundamentals and Programming in C, Dorling Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011.
- 5. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C",McGraw-Hill Education, 1996.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Develop simple applications in C using basic constructs.

- CO2 Design and implement applications using arrays, strings and functions.
- CO3 Develop and implement applications in C using pointers.
- CO4 Develop applications in C using structures and union.

CO5 Design applications using sequential and random-access file processing.

MAPPING OF COS WITH POS AND PSOS

COs				PR	OGR	AM O	итсс	MES	(POs	;)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2
CO2	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2
CO3	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2
CO4	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2
CO5	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2

GE 1	207	ENGINEERING PRACTICES LABORATORY	L	Р	Т	С
		(Common to all branches of B.E. / B. Tech Programmes)	0	0	4	2
OBJ	ECTIVES					
*	 To prov practice 	vide exposure to the students with hands on experience on various ba	sic	engi	nee	ring
LIST	OF EXPE	ERIMENTS	_		_	
		GROUP A (CIVIL & MECHANICAL)				
1 (SINEERING PRACTICE		13		
I	Buildings	:				
	(a) Study Safet	 of plumbing and carpentry components of residential and industrial by aspects. 	build	ings	•	
I	Plumbing	Works:				
	(a) Study reduc	of pipeline joints, its location and functions: valves, taps, couplings ers, elbows in household fittings.	, un	ions	,	
	(b) Study	of pipe connections requirements for pumps and turbines.			C	:01
	(c) Prepa	aration of plumbing line sketches for water supply and sewage works.				
	(d) Hand conne	s-on-exercise: Basic pipe connections – Mixed pipe material connectio ections with different joining components.	n –	Pipe	•	
	(e) Demo	onstration of plumbing requirements of high-rise buildings.				
(Carpentry	using Power Tools only:				
	a) Study	of the joints in roofs, doors, windows and furniture.				
	b) Hand	s-on-exercise: Wood work, joints by sawing, planing and cutting.				
II I	MECHANI	CAL ENGINEERING PRACTICE		18		
	Welding:					
	a) Prepa	aration of butt joints, lap joints and T- joints by Shielded metal arc welding	g.			
	D) Gas V Bacio Mar	veloing practice				
ľ	asic ivia	e Turning and Taper turning				
	h) Drillin	a Practice				
	Sheet Met	al Work:				
	a) Formi	ing & Bending.				
	b) Mode	I making – Trays and funnels.			C	:02
	c) Differ	ent type of joints.				
	Machine a	assembly practice:				
	a) Study	of centrifugal pump				
	b) Study	of air conditioner				
I	Demonstr	ration on:				
	a) Smith – Pro	y operations, upsetting, swaging, setting down and bending. Example – duction of hexagonal headed bolt.	Exe	rcise	e	
	b) Found	dry operations like mould preparation for gear and step cone pulley.				
	c) Fitting	a – Exercises – Preparation of square fitting and V – fitting models.				

		GROUP B (ELECTRICAL & ELECTRONICS)		
	EL		13	
	1.	Residential house wiring using switches, fuse, indicator, lamp and energy meter		
	2.	Fluorescent lamp wiring.		
	3.	Stair case wiring		CO3
	4.	Measurement of electrical quantities – voltage, current, power & power factor in	RLC	
		circuit.		
	5.	Measurement of energy using single phase energy meter.		004
	6.	Measurement of resistance to earth of an electrical equipment.		CO4
IV E	ELEC	TRONICS ENGINEERING PRACTICE	16	
	1.	Study of electronic components and equipment's - Resistor, colour co	oding	
		measurement of AC signal parameter (peak-peak, rms period, frequency)	using	
		CR.	-	0.05
	2.	Study of logic gates AND, OR, EX-OR and NOT.		CO5
	3.	Generation of Clock Signal.		
	4.	Soldering practice - Components Devices and Circuits - Using general pur	pose	
		PCB. Measurement of ripple factor of HWR and FWR.		
		TOTAL: 6	0 PER	RIODS
LIST	OFI	EQUIPMENT FOR A BATCH OF 30 STUDENTS		
0.14	_	Description of Environment	Qu	antity
5.NO	D .	Description of Equipment	req	uired
		CIVIL		
		Assorted components for plumbing consisting of metallic pipes, plastic pipes,	15	o o to
	1.	flexible pipes, couplings, unions, elbows, plugs and other fittings.	15	sets
2	2.	Carpentry vice (fitted to work bench)	15	Nos
	3.	Standard woodworking tools 15 Sets.	15	Sets.
4	4.	Models of industrial trusses, door joints, furniture joints	5 e	each
		Power Tools:		
		(a) Rotary Hammer		
		(b) Demolition Hammer		
ļ	5.	(c) Circular Saw	21	Nos
		(d) Planer		
		(e) Hand Drilling Machine		
		(f) Jigsaw		
		MECHANICAL		
	1.	Arc welding transformer with cables and holders.	5	Nos
2	2.	Welding booth with exhaust facility.	5	Nos
	3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 5	Sets
4	4.	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2	Nos
į	5.	Centre lathe.	2	Nos
	-	Hearth furnace, anvil and smithy tools.	2 \$	Sets
	6.			
-	6. 7.	Moulding table, foundry tools.	2 \$	Sets
	6. 7. 8.	Moulding table, foundry tools. Power Tool: Angle Grinder.	2 \$	Sets Nos

							ELE	CTR	ICAL						
1.	. As	sorted	electri	ical co	ompor	nents	for ho	ouse v	viring.					1	5 Sets
2.	. Ele	ctrical	meas	uring	instru	ment	s.							1	0 Sets
3.	. Stu	ıdy pu	rpose	e item	s: Iro	n box	, fan a	and re	gulat	or, em	ergend	y lamp).	1	each
4.	. Me	gger (2	250V/	500V)	-										1 No.
	Ро	wer To	ols:												
5.	. (a)	Range	Find	er										2	2 Nos
	(b)	Digital	Live-	wire d	letect	or									
							ELE	CTRC	DNICS	5					
1.	. So	dering	guns	10 No	os.									10	0 Nos.
2.	. As	sorted	electro	onic c	ompo	nents	for n	naking	g circu	its 50	Nos.			50	0 Nos.
3.	. Sm	all PC	Bs.											10	0 Nos.
4.	. Mu	ltimete	rs											10	0 Nos.
5.	. Stu	idy pu	rnose	item	s. To	lonho	no F	Mrad	io lov	v-volta	ae pov		volv	1	each
COUR		TCOM	ES		3. 10		110, 1	IVI TAU	10, 10	volta	90 001		,piy		
COUR Upon CO1	SE OU comple Fabric equipr	TCOM etion o ate ca nent's	ES of the rpentr to join	cours y com	se, stu npone	udent nts ai	ts will nd pip	l be a	ble to	ons inc			bing wor	ks. Use	welding
COUR Upon CO1 CO2	SE OU comple Fabric equipr Carry	TCOM etion of ate cal nent's out the	ES of the rpentr to join basic	cours y com the s	se, str pone tructu hining	udent nts al ires.	ts will nd pip	l be a pe cor	ble to	ons inc	cluding s using	plumt	bing wor	ks. Use vorks	welding
COUR Upon CO1 CO2 CO3	SE OU comple Fabric equipr Carry Carry	TCOM etion c ate cai nent's out the out bas	ES of the rpentr to join basic	cours y com the s macl	se, stu pone tructu hining ectrica	udent nts al ires. i oper al wor	t s wil l nd pip ations	I be a be cor Mak	ble to nnectione the	ons indelses.	cluding s using	plumb	bing wor	ks. Use /orks	welding
COUR Upon CO1 CO2 CO3 CO4	SE OU comple Fabric equipr Carry Carry Measu	TCOM etion c ate cai nent's out the out bas ire the	ES of the rpentr to join basic sic hol	cours y com the s macl me ele	se, stu npone tructu hining ectrica uantit	udent nts al ires. i oper al wor	ations	l be a be cor s Mak	ble to	ons indelses.	cluding s using	plumb	bing wor	ks. Use /orks	welding
COUR Upon CO1 CO2 CO3 CO4 CO5	SE OU comple Fabric equipr Carry Carry Measu Elabor	TCOM etion c ate cai nent's out the out bas ire the rate on	ES of the rpentr to join basic sic hol electr the c	cours y com the s macl me ele ical q ompo	se, sto pone tructu hining ectrica uantit nents	udent nts al res. oper al wor ies , gate	ations s, sol	l be a be cor s Mak id app dering	ble to nnectione the liance	models tices	cluding s using	plumb	bing wor	ks. Use /orks	welding
COUR Upon CO1 CO2 CO3 CO4 CO5	SE OU comple Fabric equipr Carry Carry Measu Elabou	TCOM etion of ate can nent's out the out bas ure the rate on	ES of the rpentr to join basic basic sic hol electr the co	cours y com the s macl me ele ical q ompoor M PRC	se, stu pone tructu hining ectrica uantit nents APPI	udent nts an ires. i oper al wor ies , gate NG O M OL	ts will nd pip ations ks an s, sol F CO	l be a be cor s Mak dering s WIT	ble to nnection e the liance g prac (POs)	models tices	cluding s using	ı plumk ı sheet	ping wor metal w PROG OUTC	ks. Use vorks RAM SP	ECIFIC PSOs)
COUR Upon CO1 CO2 CO3 CO4 CO5	SE OU comple Fabric equipr Carry Carry Measu Elabou	TCOM etion c ate can nent's out the out bas ire the rate on	ES of the rpentr to join basic basic sic hou electr the co	cours y com the s macl me ele ical q ompoi M PRC PO4	se, str pone tructu hining ectrica uantit nents APPI OGRA	udent nts al ires. i oper al wor ies , gate NG O M OL PO6	ts will nd pip ations ks an s, sol F CO ITCO	l be a be cor s Mak d app dering s WIT MES	ble to nnective e the liance (POs) Po9	model: es. tices Ds ANI	cluding s using D PSO	s P012	ping wor metal w PROG OUTC PSO1	ks. Use /orks RAM SP COMES (PS02	ECIFIC PSOs)
COUR Upon CO1 CO2 CO3 CO4 CO5 COs	SE OU comple Fabric equipr Carry Carry Measu Elabou	TCOM etion c ate can nent's out the out bas ire the rate on	ES f the rpentr to join basic sic hold electr the col PO3 3	cours y com the s me ele ical q ompoi M PRC PO4	se, str pone tructu hining ectrica uantit nents APPI OGRA	udent nts al ires. oper al wor ies , gate NG O M OL PO6 3	ts will nd pip ations ks an s, sol F CO JTCO	l be a be cor s Mak d app dering s WIT MES Pos	ble to nnection e the liance (POs) Pog	ons ind model: es. tices Ds ANI P010	cluding s using D PSO	plumb sheet sheet sheet sheet sheet	PROG OUTC PSO1 3	ks. Use /orks RAM SP COMES (PSO2 3	ECIFIC PSOs) PSO3 3
COUR Upon CO1 CO2 CO3 CO4 CO5 CO5	SE OU comple Fabric equipr Carry Carry Measu Elabor Po1 3 3	TCOM etion c ate can nent's out the out bas ure the rate on PO2 1 2	ES of the rpentr to join basic sic hou electr the co PO3 3 3	cours y com the s macl me ele ical q ompoi M PRC PO4 -	se, sto pone structu hining ectrica uantit nents APPI OGRA PO5 -	udent nts al ires. i oper al wor ies , gate NG O M OL PO6 3 3	s, sol F CO	I be a be cor Mak dering s WIT MES - -	ble to nnection e the liance (POs) PO9 -	ons ind models es. tices Ds ANI	cluding s using D PSO	plumb sheet sheet sheet 3 3	ping wor metal w PROG OUTC PSO1 3 3	ks. Use /orks RAM SP OMES (PSO2 3 3 3	ECIFIC PSOs) PSO3 3 3
COUR Upon CO1 CO2 CO3 CO4 CO5 CO5	SE OU comple Fabric equipr Carry Carry Measu Elabor Po1 3 3 3	TCOM etion c ate ca nent's out the out bas ure the ate on PO2 1 2 1	ES of the rpentr to join basic sic hou electr the co PO3 3 3 2	cours y com the s macl me ele ical q ompoi M PRC PO4 - -	se, sto pone structu hining ectrica uantit nents APPI OGRA PO5 - -	udent nts au ires. i oper al wor ies , gate NG O M OL PO6 3 3 2	s, sol F CO TTCO	I be a be cor s Mak id app dering s WIT MES - - - -	ble to nectione the liance p prac (POs) PO9 - - -	pons ind models es. tices ps ANI - - -	Cluding s using D PSO	plumb sheet sheet sheet 3 3 3 3	ping wor metal w PROG OUTC PSO1 3 3 3 3	ks. Use /orks RAM SP OMES (PSO2 3 3 3 3	ECIFIC PSOs) PSO3 3 3 3 3
COUR Upon CO1 CO2 CO3 CO4 CO5 CO5 CO1 CO2 CO3 CO3	SE OU comple Fabric equipr Carry Carry Measu Elabou Elabou 3 3 3 3 3	TCOM etion of ate can nent's out the out bas ure the rate on PO2 1 2 1 1 2	ES of the rpentr to join basic sic hold electr the co PO3 3 3 2 3	cours y com the s macl me ele ical q ompoi M PRC PO4 - - -	se, str pone tructu hining ectrica uantit nents APPI OGRA PO5 - - - -	udent nts al ires. i oper al wor ies , gate NG O M OL PO6 3 3 2 3	ts will nd pip ations ks an s, sol F CO ITCO P07 - - - -	I be a be cor s Mak dering dering s WIT MES - - - - -	ble to nnection e the iliance g prac (POs) PO9 - - - - -	pons ind model: es. tices ps ANI - - -	poluding s using D PSO PO11 - -	plumb sheet s PO12 3 3 3 3 3	ping wor metal w PROG OUTC PSO1 3 3 3 3 3 3	ks. Use /orks RAM SP COMES (PSO2 3 3 3 3 3 3 3	welding ECIFIC PSOs) PSO3 3 3 3 3 3 3

CS1208					PROC	GRAN	IMINO	g in C	C LAB	ORAT	ORY			L	Т	P C
					Com	mon	for CS	SE, IT	, AI-D	S & A	-ML			0	0	4 2
OBJECT	VES				O		-:		-1-							
↔ I(elop p	rogra	ms in		ng ba	ISIC CC	onstru	CIS.	function	ono ot	ruoturo				
♥ 10		elop a	pplica	tions		using	string file pr	s, poi	niers,	Tuncu	Jns, si	ructure				
	FYDE		INTS	110115		JSING	nie pi	UCESS	sing							
1 C		ammi	na us	ina si	mnle	stater	nents	ande	vnreg	ssions						
2 50			hlom-	solvin			cision	maki	na an	d looni	na					
2. 00			ifforo		y usii				ny an		ny.					-
3. G				n pan	erns	using	mulu		nuor	statem	ents.					C01
4. Pr	obien	ns soi	ving t	ising (one a	imens	sionai	array								
5. M	athen	natica	l prob	lem s	olving	using	g two	dimer	nsiona	al array	/S.					
6. So	olving	probl	ems ı	using	string	funct	ions.									4
7. So	olving	probl	ems \	vith u	ser de	efined	funct	ions.								
8. So	olving	probl	ems ι	using	recurs	sive fu	unctio	n.								
9. So	olving	probl	ems v	vith d	ynam	ic me	mory	alloca	ition.							
10. Re	ealtim	ie app	licatio	on usi	ng str	ucture	es and	d unio	ns.							
11. Re	ealtim	e pro	blem	solvin	g usir	ng seo	quenti	al and	d rand	lom-ac	cess fi	le.				CO3
12. So	olving	probl	ems v	vith co	omma	and lir	ne arg	umen	t.							
													TOTAL	_ : 60) PE	RIODS
REFERE	NCE	BOO	(S													
1. Pr	obler	n Solv	ving a	nd Pro	ogram	n Des	ign in	C, 4th	n editi	on, by	jeri R.	Hanly	and Elli	B.Ko	offma	ın.
2. Re	eema	Thare	eja, "F	Progra	immin a alia T	ig in C	C", Ox	ford L	Jniver	sity Pr	ess, S	econd	Edition,	2016).	
3. Pr 4 F	ograr Balac	nming	j in C	Dy Pr	adip i ramm	Jey, r vina ir		GNO LC 5t	sn ∠n h Edit	a ealtic	On Oxio Graw	ora Un .Hill	iversity i	ress	5.	
-, ∟. 5. A	first b	ook o	f ANS	l l C b	v Gra	v J.Br	osin 3	Brd ed	lition (Cenda	jedeln	her Lea	arnina In	dia P	.Ltd.	
6. Al	_ Kell	y, Irap	hol,P	rogra	mmin	g in C	,4th ∈	dition	Addi	son-W	esley -	- Profe	essional.			
7. Br	ain W	/.Kerr	highar	& De	ennis	Ritchi	e, C F	Progra	ammir	ng Lan	guage	, 2nd e	dition, P	HI.		
COURSE	OUT	СОМ	ES													
Upon co	mplet	ion o	f the	cours	se, st	udent	ts will	be a	ble to)						
CO1 De	evelop	o C pr	ogran	ns for	simp	le app	olicatio	ons m	aking	use of	basic	constr	ucts.			
CO2 De	evelop	o C pr	ogran	ns inv) strin	g, fun al anc	ctions	s, recu	ursion,	pointe	rs, and	structur	es.		
	sign	applic	alion	5 usiri M	y sey			e WI				cessiii e	y.			
				141	~			3 111			1 30	3	PROG	P M	SDI	
COs				PRO)GR/		UTCC	MES	(POs	5)			OUTC	OME	ES (F	PSOs)
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	2
CO2	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	2
CO3	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	2
						i	ı			1						

MA1351	PROBABILITY AND STATISTICS	L	т	Ρ	С
	Common for CSE. IT & AI-DS	4	0	0	4
OBJECTIVES		-		-	<u> </u>
To und	erstand the basic concepts of probability, one- and two-dimensional rai	ndo	m va	riat	oles
and to	introduce some standard distributions applicable to engineering which ca	an d	escri	be I	real
life phe	nomenon.				
To und	erstand the basic concepts of random processes which are widely used	l in	engir	neel	ring
applica	tions.		U		U
 To acq 	uaint the knowledge of testing of hypothesis for small and large samples.	whi	ch p	avs	an
importa	ant role in real life problems.		• p		
✤ To intre	oduce the basic concepts of classifications of design of experiments w	hich	nlav	/s \	/erv
importa	ant roles in the field of agriculture and statistical guality control.		pia	,	ory
					12
Probability – 1	The axioms of probability - Conditional probability - Baye's theorem -	Disc	rete		12
and continuou	is random variables – Moments – Moment generating functions – B	Sino	mial	c	:01
Poisson, Geor	netric Uniform Exponential and Normal distributions		mai,		
	TWO - DIMENSIONAL RANDOM VARIABLES				12
Joint distributio	ons – Marginal and conditional distributions – Covariance – Correlation ar	nd li	near		
rearession -	Central limit theorem (for independent and identically distributed	ran	dom	С	02
variables).					
	RANDOM PROCESSES				12
Classification -	- Stationary process – Markov process - Poisson process – Discrete pa	aram	neter		
Markov chain -	- Chapman Kolmogorov equations – Limiting distributions.			C	03
UNIT IV	TESTING OF HYPOTHESIS				12
Sampling distr	ibutions - Estimation of parameters - Statistical hypothesis - Large sam	ole t	tests		
based on Norr	nal distribution for single mean and difference of means -Tests based o	n t,	Chi-		
square and F	distributions for mean, variance and proportion - Contingency table	(tes	t for	C	04
independent) -	- Goodness of fit.				
UNIT V	DESIGN OF EXPERIMENTS				12
One way and	Two way classifications - Completely randomized design - Randomized	ed b	lock		OF
design –Latin	square design - 2 ² factorial design.			C	05
	TOTAL	: 6	0 PE	RIC	DS
TEXT BOOKS	i				
1. Johnso	n, R.A., Miller, I and Freund J., "Miller and Freund's Probability and	d S	tatist	ics	for
Engine	ers", Pearson Education, Asia, 9th Edition, 2017.				
2. Ibe, O	C., —Fundamentals of Applied Probability and Random Processes",	, El	sevie	er, 2	2nd
Indian	Reprint 2014				

REFE	RENC	E BOO	KS												
1.	Hwei	Hsu, "	Schau	m's (Dutline	e of T	heory	/ and	Probl	lems o	f Prob	ability,	Randor	n Variab	les and
	Rand	om Pro	cesse	s", Ta	ata Mo	Graw	v Hill E	Editior	n, Nev	v Delhi	, 2017				
2.	Yate	, R.D.	and C	Goodr	nan. I	D. J.,	"Prob	ability	y and	Stoch	astic F	Proces	ses", 2n	d Editior	n, Wiley
	India	Pvt. Lto	l., Bar	ngaloi	e, 20	14.									
3.	Papo	ulis, A	. and	I Uni	nikrist II Edu	napil	lai, S	5., "P	Probat	oility, ∣ n Nov	Rando	m Va	riables	and Sto	ochastic
1	PIOC		IVICGI "Intr	aw ⊓i oduot	ii Euu			1, 4111		n, nev		, 2017	Na and	Solontia	to" ⊿th
4.	Editio	n,Else	vier, 2	009.		0 10	Dabiii	iy an	u 318	ausucs		inginee	ers and	Scientis	515,4
5.	Spie	el. M.F	., Scł	niller.	J. and	d Srin	ivasa	n, R.A	4., "So	chaum	's Outl	ine of	Theory a	and Prob	lems of
	Prob	ability a	nd Sta	atistic	s", Ta	ta Mc	Graw	Hill E	dition	, 2008					
COUR	SE O	JTCOM	IES												
Upon	comp	etion c	of the	cours	se, st	udent	ts will	be a	ble to)		-6 -6			akiak
COT	Gete	xposur		inaon	n varia	ables	and w	veii-to	unaeo		leage	of star	idard dis	stribution	s which
CO2	Get i	leas to	handl	e situ	ations	invol	vina r	nore t	han o	ne ran	dom v	ariable			
CO3	Gain	an und	erstar	ndina	and o	chara	cterize	es ph	enom	ena wl	nich ev	volve v	vith resp	ect to tir	me in a
	proba	bilistic	mann	er and	d mod	elling	the re	eal-life	e pher	nomen	a.				
CO4	Gain	the knc	wledg	je on	Large	Sam	ples a	and S	mall S	Sample	s. The	ese cor	ncepts a	re very u	seful in
	biolo	jical, e	conor	nical	and	social	l expe	erime	nts a	nd all	kinds	of ge	neralizat	tions ba	sed on
	inforr	nation a	about	a sn	naller	samp	ole ar	nd lar	ger s	amples	s. App	ly the	appropr	iate test	in the
005	probl	ems rel	ated v	vith sa	amplir	ig.					-l-t-				
CO5	Do a	esign of	expe	rimen	ts, ca	rry the	em ou	t, and	anai	yze the	e data.				
				8.4				- 14/17				-			
				Ν	APPI	NG O	F CO	s WI	ГН РС)s AN[) PSO	S	22.0.0		
COs	;			PR [®]	IAPPI OGR/			S WI	(POs))) PSO	S	PROG OUTC	RAM SP OMES (ECIFIC PSOs)
COs	; P(1 PO2	PO3	Р Р Р04	OGR	NG O AM O PO6	OF CO UTCC P07	DMES	(POs PO9	DS ANE 5) PO10	PSO P011	S PO12	PROG OUTC PSO1	RAM SP OMES (PSO2	ECIFIC PSOs) PSO3
COs CO1	6 PC	1 PO2 3	PO3 2	PR(PO4 3	OGRA PO5 2	NG 0 AM 0 P06	DF CO UTCC PO7 -	PO8	(POs PO9	Ds ANI 5) PO10 -	PO11	S PO12	PROG OUTC PSO1 3	RAM SP OMES (PSO2	ECIFIC PSOs) PSO3
COs	5 PC 3	1 PO2 3 3	PO3 2 2	M PR P04 3 2	OGR/ P05 2 2	NG 0 AM 0 P06 1	DF CO UTCC PO7 - -	S WIT MES PO8 -	(POs PO9 -	Ds ANI - -	PO11 1	S PO12 1	PROG OUTC PSO1 3 3	RAM SP OMES (PSO2 2 2	ECIFIC PSOs) PSO3 1 1
COs C01 C02 C03	5 3 3 3 3 3 3	1 PO2 3 3 2	PO3 2 2 2 2	M PR P04 3 2 1	OGR P05 2 2 1	NG 0 AM 0 P06 1 1	PF CO UTCC P07 - - -	S WIT MES PO8 - -	(POs (POs - - -	Ds ANI PO10	PO11 1 1 1 1	S PO12 1 1 1 1	PROG OUTC PSO1 3 3 3	RAM SP OMES (PSO2 2 2 2 2	ECIFIC PSOs) PSO3 1 1 1
COs C01 C02 C03 C04	5 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3	PO3 2 2 2 2 2 2	M PR P04 3 2 1 3	PO5 2 1 3	NG 0 AM 0 1 1 1 2	DF CO UTCC P07 - - - 1	S WIT MES P08 - - - -	(POs (POs - - - -	Ds ANI PO10	PO11 1 1 2	PO12 1 1 1 2	PROG OUTC PS01 3 3 3 3 3 3	RAM SP OMES (PSO2 2 2 2 2 2 2 2	ECIFIC PSOs) PSO3 1 1 1 1 1
COs C01 C02 C03 C04 C05	5 PC 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR4 3 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 PO6 1 1 1 2 2	PF CO UTCC P07 - - - 1 1	s WIT PO8	(POs PO9 - - - - - -	Ds ANI PO10	PO11 1 1 1 2 1 1	PO12 1 1 1 2 2	PROG OUTC PS01 3 3 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 PC 3 3 3 3 3 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR 3 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC P07 - - 1 1	S WIT MES P08 - - - - - - -	(POs PO9 - - - - -	Ds ANI PO10	PO11 1 1 2 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	PS02 2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 PC	1 PO2 3 3 2 3 3 3	PO3 2 2 2 2 2 2 2 2 2	M PR 904 3 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC P07 - - 1 1	S WIT MES P08 - - - - -	(PO9 - - - - -	Ds ANI PO10	PO11 1 1 1 2 1	PO12 1 1 1 2 2 2	PROG OUTC PS01 3 3 3 3 2	PSO2 2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 3 3 3 3 3 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3 3	PO3 2 2 2 2 2 2 2 2	M PR 904 3 2 1 3 3	PO5 2 2 1 3 2	NG 0 PO6 1 1 2 2	PF CO UTCC - - 1 1	s WIT MES P08 - - - - -	(PO9 - - - -	Ds ANI PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	RAM SP OMES (Pso2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	3 PC 3 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC P07 - - 1 1	s WIT MES P08 - - - - -	(POs (PO9 - - - -	Ds ANI PO10	PO11 1 1 2 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 1	ECIFIC PSO3 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 PC	1 PO2 3 3 2 3 3 3	PO3 2 <	M PR 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC P07 - - 1 1	s WIT PO8 - - - -	(POs PO9 - - - -	Ds ANI PO10	PO11 1 1 2 1	PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 3 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR 904 3 2 1 3 3	POGR/ 2 2 1 3 2	NG 0 PO6 1 1 2 2	PF CO UTCC - - 1 1	s WIT PO8 - - - -	FH PC (PO9 -	Ds ANI PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 1	ECIFIC PSO3 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	3 PC	1 PO2 3 3 2 3 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR 904 3 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC - - 1 1	s WIT MES - - - - -	(POs PO9 - - - - -	Ds ANI PO10	PO11 1 1 2 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 1	ECIFIC PSOs) PSO3 1 1 1 1 1
COs C01 C02 C03 C04 C05	5 PC	1 PO2 3 3 2 3 3 3	PO3 2 <	M PR 3 2 1 3 3	PO5 2 1 3 2	NG 0 AM 0 1 1 1 2 2	PF CO UTCC P07 - - 1 1	s WIT MES P08 - - - - -	(POs PO9 - - - - -	Ds ANI PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 2 1	ECIFIC PSO3 1 1 1 1 1 1
COs CO1 CO2 CO3 CO4 CO5	5 3 3 3 3 3 3 3	1 PO2 3 3 2 3 3	PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M PR 2 1 3 3	POGR/ 2 2 1 3 2	NG 0 PO6 1 1 2 2	PF CO UTCC - - 1 1	s WIT MES P08 - - - - -	FH PC (PO9 -	Ds ANI PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S PO12 1 1 2 2	PROG OUTC PS01 3 3 3 3 2	RAM SP OMES (PSO2 2 2 2 2 1	ECIFIC PSO3 1 1 1 1 1 1

Dereer	COMPUTER ORGANIZATION AND ARCHITECTURE	Ρ	С
	3 0	0	3
OBJECTIVES			
 To make 	e students understand the basic structure and operation of digital computer		
To fam	liarize with implementation of fixed point and floating-point arithmetic operations		
 To stud 	ly the design of data path unit and control unit for processor		
 To und 	erstand the concept of various memories and interfacing		
 To intro 	duce the parallel processing technique		
UNIT I	COMPUTER ORGANIZATION & INSTRUCTIONS		9
Basics of a	computer system: Evolution, Ideas, Technology, Performance, Power wall,	С	01
Uniprocessors	to Multiprocessors. Addressing and addressing modes. Instructions: Operations		
and Operands	Representing instructions, Logical operations, control operations		r
UNIT II	ARITHMETIC UNIT		9
Fixed point Ad	dition, Subtraction, Multiplication and Division. Floating Point arithmetic, High	С	02
performance a	rithmetic, Subword parallelism		
UNIT III	PROCESSOR AND CONTROL UNIT		9
Introduction, L	ogic Design Conventions, Building a Datapath - A Simple Implementation	С	03
scheme - An	Overview of Pipelining - Pipelined Datapath and Control. Data Hazards:		
Forwarding ve	sus Stalling, Control Hazards, Exceptions, Parallelism via Instructions		
UNIT IV	MEMORY AND I/O ORGANIZATION	•	9
Memory hierar	chy, Memory Chip Organization, Cache memory, Virtual memory. Parallel Bus	С	04
Architectures,	Internal Communication Methodologies, Serial Bus Architectures, Mass storage,		
Input and Outp	out Devices		
UNIT V	ADVANCED COMPUTER ARCHITECTURE		9
Parallel proce	ssing architectures and challenges, Hardware multithreading, Multicore and	С	05
shared memo	ry multiprocessors, Introduction to Graphics Processing Units, Clusters and		
Warehouse sc	ale computers - Introduction to Multiprocessor network topologies		
	TOTAL : 45 PEF	rio	DS
TEXT BOOKS			
		n F	ifth
1. David	A. Patterson and John L. Hennessey, —Computer Organization and Design	I, I	
1. David edition,	A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V)	·, ·	۸ ۳
1. David edition, 2. Miles J	A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) . Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and approach. Second edition. Wiley India Pyt Ltd, 2015 (UNIT IV/V)	on:	An
1. David edition, 2. Miles J Integra	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) . Murdocca and Vincent P. Heuring, —Computer Architecture and Organization in the second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) 	on:	An
1. David edition, 2. Miles J Integra REFERENCE	A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) . Murdocca and Vincent P. Heuring, —Computer Architecture and Organization ted approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS	on:	An
1. David edition, 2. Miles J Integra REFERENCE 1. V. Carl	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) . Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and Provided approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—Mc Graw-Hill Education India Pvt Ltd, 2014 	-, F	An
1. David edition, 2. Miles J Integra REFERENCE 1. V. Carl edition, 2. William	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—Mc Graw-Hill Education India Pvt Ltd, 2014. Stallings —Computer Organization and Architecturel Seventh Edition. Pd 	-, F	An ifth
1. David edition, 2. Miles J Integra REFERENCE 1. V. Carl edition, 2. William Educat	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—Mc Graw-Hill Education India Pvt Ltd, 2014. Stallings —Computer Organization and ArchitectureII, Seventh Edition, Peter Organization and ArchitectureII, Seventh Edition, Peter Organization 	on: -, F	An ifth
1. David edition, 2. Miles J Integra REFERENCE 1. V. Carl edition, 2. William Educati 3. Govind	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—Mc Graw-Hill Education India Pvt Ltd, 2014. Stallings —Computer Organization and Architecturell, Seventh Edition, Peton, 2006. araialu, —Computer Architecture and Organization. Design Principles and Application. 	-, F ears	An ïifth
1. David edition, 2. Miles J Integra REFERENCE 1. V. Carl edition, 2. William Educati 3. Govind Second	 A. Patterson and John L. Hennessey, —Computer Organization and Design Morgan Kauffman / Elsevier, 2014. (UNIT I-V) Murdocca and Vincent P. Heuring, —Computer Architecture and Organization and approach, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V) BOOKS Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—Mc Graw-Hill Education India Pvt Ltd, 2014. Stallings —Computer Organization and Architecturell, Seventh Edition, Peter on, 2006. arajalu, —Computer Architecture and Organization, Design Principles and Application. 	-, F ears	Ar ïifth

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Describe data representation, instruction formats and the operation of a digital computer
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation
CO3	Discuss about implementation schemes of control unit and pipeline performance
CO4	Explain the concept of various memories, interfacing and organization of multiple processors

CO5 Discuss parallel processing technique and unconventional architectures

	MAPPING OF COS WITH POS AND PSOS																	
COs				PR	OGR/	AM O	UTCC	MES	(POs	;)			PROGRAM SPEC OUTCOMES (PS					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	2	3	2	1	2	-	-	1	-	-	1	2	3	3	2			
CO2	2	3	2	1	2	-	-	1	-	-	1	2	3	2	2			
CO3	2	3	2	1	2	-	-	1	-	-	1	2	3	2	2			
CO4	2	3	2	1	2	-	-	1	-	-	1	2	3	3	2			
CO5	2	3	2	1	2	-	-	1	-	-	1	2	3	2	2			

331302	DATA STRUCTURES	L	Т	Ρ	С						
	Common to CSE, IT, AI-DS, AI-ML & ECE Semester IV	3	1	0	3						
OBJECTIVE											
🛠 To uno	lerstand the concepts of ADTs.										
 To lea 	rn linear data structures like lists, stacks, and queues.										
 To lea 	rn Non-linear tree data structures.										
🛠 To ap	bly Graph structures										
 To uno 	lerstand sorting, searching and hashing algorithms										
UNIT I	LINEAR DATA STRUCTURES – LIST				9						
Abstract Dat implementation lists –Polynor	a Types (ADTs) – List ADT – array-based implementation – lin in — singly linked lists- circularly linked lists- doubly-linked lists – applica nial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).	 List ADT – array-based implementation – linked list lists- circularly linked lists- doubly-linked lists – applications of All operations (Insertion, Deletion, Merge, Traversal). 									
UNIT II	LINEAR DATA STRUCTURES – STACKS, QUEUES				9						
Stack ADT – to postfix expl – applications	Dperations – Applications – Evaluating arithmetic expressions- Conversion ression – Queue ADT – Operations – Circular Queue – Priority Queue – d of queues.	n of eQu	Infix ieue	C	02						
UNIT III	NON-LINEAR DATA STRUCTURES – TREES				9						
Tree ADT – binary search Applications c	ree traversals – Binary Tree ADT – expression trees – applications of tree ADT –Threaded Binary Trees- AVL Trees – B-Tree – B+ Tree – of heap.	tree Hea	es – ap –	С	03						
UNIT IV	NON-LINEAR DATA STRUCTURES – GRAPHS				9						
Definition – F traversal – To Dijkstra's Algo	e Prim's Algorithm – Kruskal's Algorithm – Applications of Graph	epth Iorith <i>I</i> linin	-first nms: num	С	04						
Spanning Tre											
Spanning Tre	SEARCHING, SORTING AND HASHING TECHNIQUES				9						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – S pen Addressing – Rehashing – Extendible Hashing.	Inse Sepa	rtion arate		9 05						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – S pen Addressing – Rehashing – Extendible Hashing. TOTAL	Inse Sepa	rtion arate 5 PEF		9 05 DS						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – S pen Addressing – Rehashing – Extendible Hashing. TOTAL	Inse Sepa	rtion arate 5 PEF		9 05 DS						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op TEXT BOOKS 1. Mark / Educa	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – S ben Addressing – Rehashing – Extendible Hashing. TOTAL S Allen Weiss, —Data Structures and Algorithm Analysis in CII, 2nd Edition, I tion, 1997. Thareia – Data Structures Lising CII, Second Edition, Ovford Lisingrafity	nse Sepa	rtion arate 5 PEF		9 05 DS						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op TEXT BOOKS 1. Mark / Educa 2. Reem 3. Micha Algorit	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – S Den Addressing – Rehashing – Extendible Hashing. TOTAL S Allen Weiss, —Data Structures and Algorithm Analysis in CII, 2nd Edition, I tion,1997. a Thareja, —Data Structures Using CII, Second Edition , Oxford University el T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, Data Structure https://doi.org/10.1000/10.0000	Inse Sepa . : 4 Pea v Pre es a	rtion arate 5 PEF rson ess, 2	C CC RIOI	9 05 DS						
Spanning Tre UNIT V Searching- Li sort – Shell s Chaining – Op TEXT BOOKS 1. Mark / Educa 2. Reem 3. Micha Algorit 4. Bradle using	SEARCHING, SORTING AND HASHING TECHNIQUES near Search – Binary Search. Sorting – Bubble sort – Selection sort – I ort – Radix sort - Merge sort – Quick sort. Hashing- Hash Functions – Seen Addressing – Rehashing – Extendible Hashing. TOTAL S Allen Weiss, —Data Structures and Algorithm Analysis in CII, 2nd Edition, I tion, 1997. a Thareja, —Data Structures Using CII, Second Edition , Oxford University eI T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, Data Structure hms in Python, Wiley,2013. y N. Miller, David L. Ranum, " Problem Solving with Algorithms and Data Spython " , Second Edition, 2013.	Pea Y Prees a Stru	rtion arate 5 PEF rson ess, 2 and cture	C (C (R (D) R (R (D)) R (R (R)) R (R (R)) R (R (R))	9 05 DS						

_																			
COUF	RSE	OUT	сом	ES															
Upon	con	nplet	ion o	f the	cours	se, st	udent	ts wil	l be a	ble to)								
CO1	Im	plem	ent at	ostrac	t data	types	s for li	near	data s	structu	ires.								
CO2	Ар	ply th	ne diff	erent	linea	^r data	struc	tures	to pro	blem	solutic	ons.							
CO3	3 Implement abstract data types for non-linear data structures.																		
CO4	Ар	ply G	Graph	data	struct	ure fo	r the I	real w	orld p	roble	ms.								
CO5	Cri col	ticall lisior	y ana i free	lyze t scena	he va ario fo	rious r data	sortir a stora	ng, se age ar	archir nd ret	ng alg rieval	jorithm	is and	hash f	h functions that result in					
					Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s						
COs	5				PR	OGR/	AM O	итсс	MES	(POs	5)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)			
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1		3	3	3	2	2	2	-	-	-	2	2	2	3	3	3			
CO2	2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3			
CO3	3	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3			
CO4	L	3	3	3	2	2	2	-	-	-	2	2	2	3	3	3			

CO5

_

_

-

DS1302	OBJECT ORIENTED PROGRAMMING (Lab Integrated)	P	C
		2	4
Analyz Aralyz Analyz Inherita	e the necessity for Object Oriented Programming paradigm over st mming and become familiar with the fundamental concepts in OOP like encap ance and Polymorphism	ructu sulat	urec tion
Design and sp	an object-oriented system, GUI components and multithreaded processes as pe	er ne	ed
✤ To proproved Progra	ovide a Strong foundation for advanced programming using Object mming Concepts.	Orier	nte
UNIT I	JAVA FUNDAMENTALS	g)+(
History of Java Convention – Java- Control 3 Lab Compone 1. Write a Java Read in a, b, c message statil 2. The Fibona sequence are Write a Java value in the Fil	a - Java buzzwords- JVM architecture – Java Source File Structure – Naming Data Types – Literals in Java- Scope and life time of variables – Operators in Statements in Java - Array – String and StringBuffer ent: a program that prints all real solutions to the quadratic equation $ax^2 + bx + c = 0$, c and use the quadratic formula. If the discriminate b^2 -4ac is negative, display a ng that there are no real solutions. acci sequence is defined by the following rule: The first two values in the 1 and 1. Every subsequent value is the sum of the two values preceding it. program that uses both recursive and non recursive functions to print the n th	с	[:] 01
		•	
Working with Methods – Pa Private Method The Cosmic S Lab Compone 1. Write a jav method name Hexagon such contains only geometrical fig 2. Write a Java	Objects - Implementing Classes - Object Construction - Static Variables and ckages - Nested Classes – Abstract Class - Interfaces – Static, Default and ds – Local and Anonymous Classes – Inheritance – Extending a class - Object: uperclass – Wrapper classes. Pht: a program to create an abstract class named Shape that contains an empty d number of Sides (). Provide three classes named Trapezoid, Triangle and that each one of the classes extends the class Shape. Each one of the classes the method number of Sides () that shows the number of sides in the given pures a program that counts the number of objects created by using static variable	C	02
UNIT III	EXCEPTIONS, COLLECTIONS AND STREAMS	9	+ 6
Exceptions – creating own streams and C Lab Compone	exception hierarchy – throwing and catching exceptions – built-in exceptions, exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte haracter streams – Reading and Writing Console – Reading and Writing Files. ent: a program to make frequency count of words in a given text	СС	03

Threads – Multithreaded Programming – Thread Creation – Life Cycle – Thread Priorities - Synchronization of Threads - Event Handling: Event Listeners, Delegation event model,	
Synchronization of Threads - Event Handling: Event Listeners, Delegation event model,	
handling mouse and keyboard events, Adapter classes. Swing: Introduction, Limitations of	
AWT, MVC Architecture, Components, Containers, Exploring Swing Components - Handling	
menus, Layout Manager – Layout Management types – Border, Grid, Flow, Card and Grid	
Bag.	
1. Write a Java program that creates three threads. First thread displays "Good Morning"	CO4
everyone second, the second thread displays "Hello" every two seconds and the third thread	004
alsplays welcome every linee seconds.	
2. While a java Frogram to create a window when we press	
I. M or m the window displays Good Morning	
II. A or a the window displays Good After Noon	
III. E or e the window displays Good Evening	
iv. N or n the window displays Good Night	
UNIT V JAVA SERVER TECHNOLOGIES AND NETWORK PROGRAMMING	9 + 6
Introduction to Servlet - Servlet Life Cycle - The Servlet API - Developing and Deploying	
Servlets - Exploring Deployment - Networking Basics – Exploring java.net classes and	
Interfaces, InetAddress, TCP/IP Client and Server Sockets – Cookies and Datagrams.	
1. Develop a program for executing the remote command using TCP Socket	
2. Create a GUI program in java with the following components.	
i. A frame with Flow layout.	
ii. Add the following components on to the frame.	CO5
a) Two Text Field	
b) A button with the label display	
iii. Allow the user to enter data into the JTextField	
iv. When the button is clicked paint the frame by displaying the data entered in the	
JTextField	
v. Allow the user to properly close the frame	
PRACTICALS: 45 PERIODS THEORY: 30 PERIODS TOTAL:75 PERIODS	
TEXT BOOKS	
1. Herbert schildt, "The complete reference", 11th Edition, Tata Mc Graw Hill, New Delhi. 20)18.
2. Cay S. Horstmann, "Core Java SE 9 for the Impatient", 2nd Edition, Addison-Wesley, 2017	7.
3. Paul Deitel, Harvey M. Deitel, "Java How to Program", 11th Edition, Pearson Education, 2	2018.
REFERENCE BOOKS	
1. T. Budd. "An Introduction to Object Oriented Programming". 3rd Edition. Pearson Educ	cation.
2009.	,
2. Y. Daniel Liang, "Introduction to Java programming". 7th Edition. Pearson education. 201	10.
3. C Xavier . "Java Programming – A Practical Approach". Tata McGraw-Hill Edition. 2011.	
	cation
4 K Arnold and J Gosling "The Java programming language" 3rd Edition Pearson Educ	sauon,
4. K. Arnold and J. Gosling, "The Java programming language", 3rd Edition, Pearson Educ 2000.	

r															
	RSE OU	TCON	NES												
Upon	comple	etion	of the	cours	se, st	uden	ts Wil	l be a	ble to)					
CO1	Under	stand	the	fur	ndame	ental	idea	as	behin	d th	e ob	oject-o	riented	approa	ch to
	progra	mmin	g												
CO2	Inculca	ate co	ncepts	s of in	herita	nce to	o crea	te nev	w clas	ses fro	om exi	sting o	ne & De	sign the	classes
	neede	d give	n a pr	oblem	spec	ificati	on								
CO3	A mod	dern o	covera	ge of	conc	urren	t prog	gramr	ning	that fo	cuses	on hig	gh-level	synchro	nization
	constr	ucts													
CO4	Know	the co	ncept	of eve	ent ha	ndling	g use	d in G	UI.						
CO5	Develo	op Ser	ver Pr	ogran	nming	I Appl	icatio	ns							
				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	s			
									(DO-)				PROG	RAM SP	ECIFIC
COs				PRC	GRA				(PUS)				OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	2	-	-	2	1	1	1	2	2	1
CO2	1	1	2	1	1	1	2	1	2	1	1	1	2	2	2
CO3	1	1	1	1	1	-	-	1	2	2	2	1	1	2	2
CO4	1	1	2	-	1	-	1	-	1	1	2	1	3	1	3
CO5	2	2	2	2	2	-	1	1	2	1	2	2	1	2	2

DS1303	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	L	Т	Ρ	С
	Common for AI-DS & AI-ML	3	0	0	3
OBJECTIVES					
 To impain to impain to impain to lear To lear To und To und 	art basic knowledge about Artificial Intelligence In the methods of solving problems using Artificial Intelligence In to represent knowledge in solving AI problems erstand the concept of Planning in various situations erstand the application of AI namely Expert Systems				
UNIT I	INTRODUCTION				9
Introduction–D Characteristics Structure of Ag	efinition – Foundation and History of AI - Future of Artificial Intelli of Intelligent Agents– Agents and Environments – Nature of Environ jents - Typical Intelligent Agents	geno men	ce – its –	с	:01
UNIT II	PROBLEM SOLVING METHODS				9
Problem solvin Search Algori Constraint Sa Playing – Optin	ng Methods - Search Strategies- Uninformed - Informed - Heuristics thms and Optimization Problems - Searching with Partial Observ isfaction Problems – Constraint Propagation - Backtracking Search nal Decisions in Games – Alpha - Beta Pruning	- L atior - G	ocal ns - ame	с	:02
UNIT III	KNOWLEDGE REPRESENTATION				9
First Order Pre Chaining – Re Objects – Eve Reasoning with	edicate Logic – Prolog Programming – Unification – Forward Chaining-B solution – Knowledge Representation - Ontological Engineering-Catego nts - Mental Events and Mental Objects - Reasoning Systems for cate n Default Information	ackv ories gorie	vard and es –	с	:03
UNIT IV	PLANNING				9
Planning – Intr planning – Co Planning – Mu	oduction – Planning Problem – Planning with State Space Search - Part nstruction and Use of Planning Graphs - Conditional Planning – Co ti Agent Planning	ial O ntinu	order Jous	с	:04
UNIT V	EXPERT SYSTEMS			1	9
Expert system Acquisition – I Expert system	s – Architecture of expert systems, Roles of expert systems – Kn /leta knowledge, Heuristics. Typical expert systems – MYCIN, DART, s shells.	owle XO	edge ON,	с	:05
	ΤΟΤΑΙ	. : 4	5 PE	RIO	DS
TEXT BOOKS					
 Russell Edition Kevin N 	S and Norvig P, "Artificial Intelligence: A Modern Approach, Pren 2009. light and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill-	tice 200	Hall 8.	, Tł	hird
REFERENCE	BOOKS				
1. M. Tin Bartlett 2. I. Bra Educat	n Jones - Artificial Intelligence: A Systems Approach (Computer Scier Publishers, Inc.; First Edition, 2008. ko - Prolog: Programming for Artificial Intelligence, Fourth edition, A onal Publishers Inc., 2011. ackson. "Introduction to Expert Systems". 3rd Edition. Pearson Education	nce), Addis n, 20	Jon son- [\])07.	es a Nes	and sley

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Implement basic AI Algorithms CO2 Use appropriate search algorithms to solve AI based problems CO3 Represent a problem using first order and predicate logic Design a simple agent system with associated planning technique. CO4 CO5 Apply AI techniques to real-world problems to develop expert system MAPPING OF COs WITH POs AND PSOs **PROGRAM SPECIFIC** PROGRAM OUTCOMES (POs) OUTCOMES(PSOs) COs PO1 PO2 PO3 PO4 PO5 PO6 **PO7** PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 3 3 3 3 3 2 --1 2 2 3 3 3 3 CO2 3 3 3 3 3 2 --1 2 2 3 3 3 3 CO3 3 2 3 3 3 3 -1 2 2 3 3 3 3 -

CO4

CO5

3

3

3

3

3

3

3

3

3

3

2

2

-

-

-

-

2

2

2

2

2

2

3

3

3

3

3

3

3

DS1304	FOUNDATIONS OF DATA SCIENCE	L	Т	Ρ	C
		3	0	0	3
OBJECTIVE	3				
🛠 To une	derstand the foundation of Data Science using Python.				
To per	form statistical data analysis and prediction.				
To be	familiar with supervised and unsupervised methods in machine learning.				
To une	derstand the algorithm for massive data problems and clustering.				
 To lear 	rn about different topic and graphical models				
UNIT I	DATA SCIENCE AND PYTHON				
ntroduction t	Data Science: Computational Tools - Need for data science - Causa	ality	and		
Experiments;	Array Computing in Python: Vectors - Arrays - Advanced Vectoriza	atio	n of	C	n
Functions -	Higher- Dimensional Arrays: Matrices and Arrays; Dictionaries and	Stri	ngs,		
Fundamental	Python Libraries				
UNIT II	STATISTICAL DATA ANALYSIS			_1	
Data Prepara	tion - Exploratory Data Analysis – Estimation - Statistical Inference – Me	easu	uring		
Variability- E	A Case Study- Hypothesis Testing- Prediction - Inference for Regression.				.0
UNIT III	MACHINE LEARNING				
The Percept	on Algorithm - Kernel Functions - Overfitting and Uniform Converge	geno	ce -	Τ	
Regularization	n - Support Vector Regularization - Support Vector Machines - Strong an	nd W	/eak	С	0
Learning – St	ochastic Gradient Descent.				
UNIT IV	DATA STREAMS AND CLUSTERING				
			atrix	Τ	
Algorithms for	r Massive Data Problems: Frequency Moments of Data Streams -	- M	aunz		_
Algorithms for Algorithms us	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k	- М <-Се	enter	С	U.
Algorithms fo Algorithms us Clustering - S	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning.	- M <-Ce	enter	С	0
Algorithms for Algorithms us Clustering - S UNIT V	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS	- M <-Ce		С	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden	- M <-Ce Ma	rkov	C	
Algorithms fo Algorithms us Clustering - S UNIT V Topic Models Models - Baye	 Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields 	- M <-Ce Ma	rkov	c	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL	- M <-Ce Ma	rkov	C	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL	- M <-Ce Ma _: 4	rkov	C C ווס	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK 1. Avrim	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL Blum,John Hopcroft, Ravindran Kannan, "Foundations of Data Science	- M <-Ce Ma	rkov	C C RIO	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK 1. Avrim Camb	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL B Blum,John Hopcroft, Ravindran Kannan, "Foundations of Data Science ridge University Press , 2020. (Unit III,IV & V)	- M <-Ce Ma	rkov		
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK 1. Avrim Camb 2. Ani Ad	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL B Blum,John Hopcroft, Ravindran Kannan, "Foundations of Data Science ridge University Press , 2020. (Unit III,IV & V) Hikari, JohnDeNero, "Computational and Inferential Thinking: The Found	- M <-Ce Ma .: 4: be",	rkov	C C C C C C C C	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK 1. Avrim Camb 2. Ani Ao Sciend	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL Blum,John Hopcroft, Ravindran Kannan, "Foundations of Data Science ridge University Press , 2020. (Unit III,IV & V) Ihikari, JohnDeNero, "Computational and Inferential Thinking: The Found re", GitBook, 2017. (Unit I,II)	- M <-Ce Ma .: 4 ce",	rkov	C C RIO	
Algorithms for Algorithms us Clustering - S UNIT V Topic Models Models - Baye TEXT BOOK 1. Avrim Camb 2. Ani Ao Scieno 3. Laura	r Massive Data Problems: Frequency Moments of Data Streams – ing Sampling, Sketches of Documents; Clustering: k-Means Clustering, k pectral Clustering – Community Finding and Graph Partitioning. TOPIC MODELS AND GRAPHICAL MODELS – Non-negative Matrix Factorization - Latent Dirichlet Allocation - Hidden esian Belief Networks - Markov Random Fields TOTAL Blum,John Hopcroft, Ravindran Kannan, "Foundations of Data Science ridge University Press , 2020. (Unit III,IV & V) Ihikari, JohnDeNero, "Computational and Inferential Thinking: The Found re", GitBook, 2017. (Unit I,II) Igual, Santi Segui,"Introduction to Data Science: A Python Approach	- M <-Ce Ma .: 4! .: at to	rkov 5 PEI 1 st E ons c	C C RIC Edition	io pt

REFERENCE BOOKS 1. Dr .Gypsy Nandi & Dr.Rupam Kumar Sharma, "Data Science Fundamentals and Practical Approaches: Understand Why Data Science is the Next", BPB Publisher, 2020 2. Hans Petter Langtangen, "A Primer on Scientific Programming with Python", 4th Edition, Springer, 2016. 3. Jonathan Dinu,"Foundations of Data Science : A Practical Introduction to Data Science with Python", Addison-Wesley Data& Analytics Series, 2016. 4. EMC Education Services, "Data Science and Big Data Analytics : Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015. 5. Joel Grus,"Data Science from Scratch: First Principles with Python", O'Reilly, 2015 6. JureLeskovek, Anand Rajaraman, Jeffrey Ullman, "Mining of Massive Datasets", V2.1, Cambridge University Press, 2014. 7. Cathy O'Neil, Rachel Schutt."Doing Data Science, Straight Talk from The Frontline", O'Reilly, 2014. COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Analyze the data using Python programs CO2 Demonstrate knowledge of statistical data analysis techniques. CO3 Demonstrate machine learning algorithms in practice by developing the applications. CO4 Understand the principles of handling data streams and clustering. CO5 Understand different topic and graphical modeling techniques in real world problem. MAPPING OF COs WITH POs AND PSOs **PROGRAM SPECIFIC** PROGRAM OUTCOMES (POs) **OUTCOMES (PSOs)** COs PO2 PO3 PO4 PO5 PO6 **PO7** PO8 PO9 PO10 PO11 PO12 PSO2 PO1 PSO1 PSO3 3 3 3 3 2 2 2 2 3 3 2 2 CO1

CO2

CO3

CO4

CO5

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

-

-

_

-

-

2

2

2

2

2

2

2

2

2

2

2

2

-

-

-

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

DS1307	DATA STRUCTURE LABORATORY USING PYTHON	L	Т	Р	С
	Common for AI-DS & AI-ML	0	0	4	2
OBJECTIVES			1	1	1
 To intro 	oduce the concepts of primitive data structures.				
 To und 	erstand the process in linear and non-linear data structures.				
 To intro 	oduce the concepts of sorting, searching and hashing.				
LIST OF EXP	ERIMENTS				
1. IMPLIMEN	ITATION OF LIST				
Write Python p	programs to				
a.	Array implementation of Stack ADTs.				
b.	Array implementation of Queue ADTs.				
2. LIST ADT					
Array i	mplementation of List ADT.			С	:01
3. IMPLEME	NTATION OF STACK AND QUEUE				
Write Python p	programs to				
a.	Design and implement Single Linked List.				
b.	Design and implement Stack and its operations using List.				
С.	Design and implement Queue and its operations using List.				
4. APPLICA	TIONS OF LINEAR DATA STRUCTURE				
Write Python p	programs for the following:				
a.	Design and implement polynomial ADT using list				
b.	Uses Stack operations to convert infix expression into postfix expressio	n.			
С.	Uses Stack operations for evaluating the postfix expression.			С	:02
5. APPLICA	TIONS OF TREE				
a.	Write a Python program to Design and implement binary tree.				
b.	Traverse the above binary tree recursively in pre-order, post-order & in-o	orde	er.		
6. IMPLEME	NTATION OF TREE				
Write a Pythor	n program to Design and implement binary search tree.				
7. IMPLEME	NTATION OF ADVANCED TREE				
a.	Design and Implement AVL tree using Templates.			C	03
b.	Design and Implement heap tree using Templates.			_	
8. IMPLEME	NTATION OF SHORTEST PATH ALGORITHMS				
Write Python p	programs for the following:			С	:03
a.	Design and Implement Dijkstra's algorithm				
9. IMPLENIE	NTATION OF MINIMUM SPANNING TREE				
a vince Fytholi p	Design and Implement Kruskal's algorithm				
b.	Design and Implement Prim's algorithm.				
10. GRAPH T	RAVERSAL & APPLICATIONS				
Write Python r	programs to implement the following algorithms:				
a.	Depth first search.				
b.	Breadth first search.				
С.	Toplogical Sorting.				

11. SORTING & SEARCHING AND HASH TABLE IMPLEMENTATION

- a. Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order.
 - i. Insertion sort
 - ii. Selection sort
 - iii. Quick sort
 - iv. Merge sort
- b. Write Python programs for implement linear search and binary search.
- c. Write Python programs for implement Hashing any two collision techniques

TOTAL: 60 PERIODS

REFERENCE BOOKS

1. Rance D. Necaise, Data Structures and Algorithms Using Python, Willy Student Edition, 2016.

WEB REFERENCES

- 1. https://cloudacademy.com/lab/python-lab-1/
- 2. https://www.python.org/downloads/

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Write functions to implement linear and non-linear data structure operations

CO2 Suggest appropriate linear / non-linear data structure operations for solving a given problem

CO3 Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval

MAPPING OF COs WITH POS AND PSOs

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	1	-	-	2	2	2	3	3	3	3	2
CO2	3	3	3	1	1	-	-	2	2	2	3	3	3	3	2
CO3	3	3	3	1	1	-	-	2	2	2	3	3	3	3	2
DS1308	ARTIFICIAL INTELLIGENCE LABORATORY	L	Т	Ρ	С										
--------------------------------------	--	-------------------------	-----------------------	-------	------										
	Common for AI-DS & AI-ML	0	0	4	2										
OBJECTIVE	S														
🛠 To g	et familiarized with the structure of agents														
🛠 To so	olve simple toy world problems														
🛠 To u	nderstand and develop solutions through search strategies.														
To de	evelop solutions for constraint satisfaction problems.														
🛠 To in	crease the knowledge about real-world problems and how to plan and act	in th	e rea	al wo	orld										
and t	o get familiarized with expert systems														
-IST OF EX	PERIMENTS														
1. Deve probl agen choo	eloped a simple reflex agent program in Python for the vacuum-clean em. This particular world has just two locations: squares A and B. The t perceives which square it is in and whether there is dirt in the square se to move left, move right, suck up the dirt, or do nothing.	er w vac e. It	/orld uum can												
2. Solve and objec steps	e the 8-puzzle problem, which consists of a 3×3 board with eight number a blank space. A tile adjacent to the blank space can slide into the space ctive is to reach a specified goal state as given below. Find minimum nu s required to reach the goal. 1 2 $3 4 5$ $6 7 8$ Goal State	ered ace. umbe	tiles The er of	C	:01										
3. Write the p attac	e a Python program to solve N Queen Problem using backtracking. The N (problem of placing N chess queens on an N×N chessboard so that no two k each other.	Quee o que	en is eens												
4. Write using	a Python program for a path search problem to find a path from point A to A* Search Algorithm.	o poi	int B												
5. Using Prob starti	g Hill Climbing Search Algorithm, find the solution for a Travelling S lem, which has to find the shortest route from a starting location and bac ng location after visiting all the other cities.	ales ck to	man the												
6. Give with the s	n an undirected graph and a number m, determine if the graph can be at most m colours such that no two adjacent vertices of the graph are colo ame color. Here coloring of a graph means the assignment of colors to all v	colou ored vertic	ured with ces.	C	:02										
7. Solve digits prob letter	e the cryptarithmetic puzzle SEND+MORE=MONEY using a Python prograse that replace letters to make a mathematical statement true. Each letter the represents one digit (0–9). No two letters can represent the same digit. repeats, it means a digit repeats in the solution.	am. er in Wh	Find the en a												
8. Write numl Sudo the n	a Python program to solve Sudoko. Given an initial 9x9 grid of cells of cers between 1 and 9 or blanks, all blanks must be filled with numbers. oko if you find all values such that every row, column, and 3x3 subsquare numbers 1–9, each with a single occurrence.	conta You cont	ainig win ains												

9.	A job of task compl the job	shop c s that eted ir s on tl	onsist requii spec ne ma	s of a re use ified chine	a set c e of pa order. s to m	of disti articula Imple ainimi	inct m ar ma emen ze the	achir chine t the time	ies that s for l job sh neces	at proc known hop scl ssary t	ess jo duratio nedulir o proc	bs. Ea ons, ar ng prot ess all	ch job is nd which plem to s jobs.	a series must be schedule	
10	. Demo of an e a rudii identit	nstrate expert nentar / of the	the usyster syster y use infec	use of m; wh r inter cting c	MYC ich de face t	IN: a fines o coll sm.	medi a few lect da	cal ex / cont ata at	kpert : exts, pout a	system paramo n infec	tion in	ement and rul order	a small es, and to deter	example presents mine the	- CO3
													TOTAL	: 60 PE	RIODS
REFE	RENCE	BOO	KS												
1.	Russe Editior	ll S a 1, 2009	nd N).	orvig	P, "A	rtificia	al Int	ellige	nce: /	A Mod	lern A	pproad	ch, Pren	tice Hall	, Third
2.	Kevin	Night a	and El	aine l	Rich, I	Nair E	3., "Ar	tificial	Intell	igence	(SIE)	', Mc G	iraw Hill-	2008.	
WEB	REFER	ENCE	S												
1.	https:/	/www.t	utoria	Ispoir	nt.com	/artifi	cial_ir	ntellig	ence_	_with_p	by thon	/index.	htm		
2.	https:/	/www.e	edurel	ka.co/	/blog/a	artifici	al-inte	elliger	nce-wi	th-pyth	non/				
COUR	SE OU	тсом	ES												
Upon	comple	etion o	of the	cours	se, stı	udent	ts will	l be a	ble to)					
CO1	Familia simple	arized toy we	with t orld pi	he st robler	ructur ns.	e of a	agent	s, imp	leme	nt simp	ole ag	ents ai	nd devel	op soluti	ons for
CO2	Impler constr	nent a aints o	nd de f prob	evelop Iems	solu and d	tions evelo	for p p solu	oroble itions	ms th for co	nrough Instrair	different different satis	ent se	arch stra	ategies. ns.	Identify
CO3	Appro: systen	ach a i ns.	real-w	orld p	orobler	n, de	velop	a pla	n and	I then s	solve t	hose p	oroblems	and use	expert
				Μ		NG O	F CO	s WI	ГН РС)s ANE	PSO	s			
													PROG	RAM SP	ECIFIC
0.0				PR	OGRA		UTCC	MES	(POs	5)			OUTC	OMES (PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

COs		-		PRO	JGR/			INES	(POs	5)			OUTCOMES (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	F			
CO1	3	3	3	3	1	1	1	1	2	2	2	3	3	3				
CO2	3	3	3	3	1	1	1	1	2	2	2	3	3	3				
CO3	3	3	3	3	2	1	1	1	2	2	2	3	3	3				

MA1453	DISCRETE MATHEMATICS	_	Т	Ρ	С
	Common for CSE, IT & AI-DS	1	0	0	4
OBJECTIVES					
 To intro 	oduce Mathematical Logic, Inference Theory and proof methods.				
 To pro 	vide fundamental principles on combinatorial counting techniques.				
✤ To intre	oduce graph models, their representation, connectivity and traverse ability	/.			
To exp	lain the fundamental algebraic structures, groups and their algebraic prop	bert	ies.		
To intro	oduce partial ordering and some functions on a set.				
					12
Propositional	Logic – Propositional Equivalences – Normal Forms - Predicates and Qu	lan	tifier	s	
– Nested Qu	antifiers – Rules of Inference – Introduction to Proofs – Proof Metho	ods	an	d '	CO1
Strategy.					
	COMBINATORICS				12
Mathematical	Induction – Strong Induction and Well Ordering – The Basics of Counti	ng ·	- Th	e	<u> </u>
Pigeonhole P	rinciple – Permutations and Combinations – Recurrence Relations -Ge	ner	ratin	g	•••
Functions - S	Solving Linear Recurrence Relations Using Generating Functions- Inc	lus	ion	_ '	CO2
Exclusion – P	inciple and Its Applications.				
UNIT III	SETS AND FUNCTIONS				12
Set -Relations	s on sets – Types of relations and their properties – Partitions – Equ	iva	lenc	е	<u> </u>
relations – Pa	rtial ordering – Poset – Hasse diagram. Functions: Characteristic function	of	a se	et /	CO3
 Hashing fun 	ctions – Recursive functions – Permutation functions.				
UNIT IV	GRAPHS				12
Graphs and	Graph Models – Graph Terminology and Special Types of Graphs ·	– N	<i>l</i> atri	×	CO4
Representatio	n of Graphs and Graph Isomorphism – Connectivity – Euler and Hamiltor	l Pa	aths.		
UNIT V	ALGEBRAIC STRUCTURES				12
Groups – Su	bgroups – Homomorphisms – Isomorphism - Normal Subgroup and	Co	set	-	CO5
Lagrange's Th	ieorem.				
TEXT DOOK	TOTAL	. : 6	50 P	ERI	ODS
IEXI BOOKS					
1. Kenne	th H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw F	1111	Jub.		
Co.Ltd	., Seventh Edition, Special Indian Edition, New Delhi, 2012.	_			
2. Tremb	lay J.P. and Manohar R, "Discrete Mathematical Structures with	App	olica	tion	s to
Compi	iter Science", Tata McGraw Hill Pub. Co. Ltd, Thirtleth Reprint, New Delh	1, 20	011.		
REFERENCE	BOOKS				
1. Ralph.	P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied	d I	ntro	duct	tion",
Pearso	on Education, Fifth Edition, New Delhi, 2014				
2. Seymo	our Lipschutz and Mark Lipson," Discrete Mathematics", Schaum's	Οι	utline	€S,	Tata
McGra	w Hill Pub. Co. Ltd., Third Edition, New Delhi, 2013.				
2 Thoma	is Koshy," Discrete Mathematics with Applications", Elsevier Publications	Bo	nstor	1 20)04.

COUF	RSE	OUT	COM	ES												
Upon	com	nplet	ion o	f the	cours	se, st	udent	ts will	l be a	ble to						
CO1	Cor	nstru	ict pr	oofs	by u	sing	direc	t pro	of, pr	oof k	by cor	trapos	sition,	proof	by contr	adiction.
	Cor	nstru	ict ma	athem	atical	argu	ment	s usir	ng log	gical o	connec	tives a	and qu	uantifie	rs and v	erify the
	cor	rectr	ness	of an	argu	iment	using	g pro	positio	ons. I	_ogic l	helps	in arri	ving in	ferences	for any
	pro	blem	۱.													
CO2	Sol	ve p	proble	ems (on p	ermut	ation	and	com	binatio	on. Pr	ove r	nathen	natical	theorem	ns using
	ma	them	natica	l indu	ction	. Den	nonsti	rate b	oasic	count	ing pr	inciple	s, con	npute a	and inter	pret the
	me	aning	g in t	he co	ontext	of th	ne pa	rticula	ar app	olicatio	on whi	ch hel	ps to	apply t	the comb	oinatorial
	tecl	hniqu	ues in	Algo	rithms	s and	Data	struct	ure fo	r ana	lysis ar	nd des	ign.			
CO3	Understand relations on a set and functions on a set															
CO4	Apply the concepts of graph theory in data structures, data mining, image segmentation and in															
	clus	sterir	ng.													
CO5	Far	miliar	r with	n alg	ebraio	sys	tems,	grou	ups, s	sub g	groups	, Lagi	ange's	theor	em and	normal
	sub	ogrou	ıps. lı	n Cod	ling a	lgorith	nms a	ind in	theor	etical	comp	uter so	cience	algebra	aic struct	ures are
	app	blied.														
					Μ	APPI	NG O	F CO	s WIT	TH PC)s and	D PSO	S			
					חם				MES	(DO	<u>،</u>			PRO	GRAM SI	PECIFIC
COs	6				FK					(FUS)			OUT	COMES	(PSOs)
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	2	2	1	1	-	-	-	1	1	2	2	2	1
CO2	2	3	3	2	2	1	1	-	-	-	1	1	2	2	2	1
CO3	;	3	3	2	2	1	1	-	-	-	1	1	2	2	2	1

-

-

-

-

-

-

-

-

CO4

CO5

CS1401	DESIGN AND ANALYSIS OF ALGORITHMS	L	Т	Ρ	С
	Common for CSE, IT, AI-DS & AI-ML	3	0	0	3
OBJECTIVES					
 I o lear 	n the general framework for analyzing algorithm efficiency				
To be c	conversant with algorithms for common problems.				
🛠 To ana	lyse the algorithms for time/space complexity.				
 To write 	e algorithms for a given problem using different design paradigms.				
 To und 	erstand computational complexity of problems				
UNIT I	INTRODUCTION				9
Algorithm – Fu	undamentals of Algorithmic Problem Solving – Important Problem Type	es –	The		
Analysis Fram	ework - Asymptotic Notations and Basic Efficiency Classes - Math	ema	tical	С	01
Analysis of No	nrecursive and Recursive Algorithms – Empirical Analysis of Algorithms.				
UNIT II	DECREASE AND CONQUER AND DIVIDE-AND-CONQUER			1	9
Decrease-and-	Conquer– Insertion Sort – Binary Search – Computing a Median	and	the		L
Selection Prob	lem – Divide-and-Conquer – Merge Sort – Quicksort – The Closest –	Pair	and	С	02
Convex –Hull I	Problems by Divide-and-Conquer.				
UNIT III	DYMANIC PROGRAMMING AND GREEDY TECHNIQUE			I	9
The Knapsack	Problem and Memory Functions – Optimal Binary Search Trees – W	arsh	nall's		<u> </u>
Algorithm – Fl	oyd's Algorithm – Greedy Technique – Prim's Algorithm – Kruskal's Alg	orith	nm –	С	03
Dijkstra's Algo	rithm – Huffman Trees and Codes.				
UNIT IV	ITERATIVE IMPROVEMENT				9
Graphical Meth	nod – The Simplex Method – The maximum Flow Problem – Maximum N	Natc	hing		
in Bipartite Gra	aphs – The Stable Marriage Problem.			C	04
UNIT V	BACKTRACKING, BRANCH-AND-BOUND AND APPROXIMATION			1	9
	ALGORITHMS				
P, NP, and NF	- Complete Problems – Backtracking – n-Queens Problem – Hamiltonia	n Ci	rcuit		
Problem – Su	bset-Sum Problem – Branch-and-Bound – Assignment Problem – K	nap	sack	~	OF
Problem – Tr	aveling Salesman Problem – Approximation Algorithms for the T	rave	eling	C	05
Salesman Prol	plem and the Knapsack Problem.				
	TOTAL	.:4	5 PE	RIO	DS
TEXT BOOKS					
1. Anany Educat	Levitin, "Introduction to the Design and Analysis of Algorithms", Third E ion, 2012.	ditic	on, P	ear	son
2. Thoma Algorith	s H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, ms", Third Edition, McGraw Hill, 2009.	"Intr	oduc	tion	ı to
REFERENCE	BOOKS				
1. Steven	S. Skiena, "The Algorithm Design Manual", Second Edition, Springer, 20	08.			
2. Robert	Sedgewick, Kevin Wayne, "Algorithms", Fourth Edition, Pearson Educati	on, 2	2011		
3. Donald Edition	E. Knuth, "Art of Computer Programming, Volume I - Fundamental Alg Addison Wesley, 1997.	gorit	hms'	', Tł	זיר

COUF	RSE	OUT	СОМ	ES												
Upon	com	plet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to)					
CO1	Abi	lity to	o inve	stigat	e an a	algorit	thm's	efficie	ency v	vith re	spect	to runr	ning tin	ne		
CO2	Des	sign	and i	impler	ment	proble	ems i	using	algori	ithmic	desig	n tech	niques	such a	s decrea	se and
	con	que	r and	divide	and	conqu	Jer									
CO3	Ability to understand the design techniques such as Dynamic programming and Greedy															
	tech	hniqu	ue													
CO4	Abi	lity to	o und	erstar	nd the	iterat	tive d	esign	techn	iques						
CO5	 D5 Understand the variations among tractable and intractable problems 															
					Μ	APPI	NG O	F CO	s WIT	гн рс)s AN[D PSO	s			
										(7.6				PROG	RAM SP	ECIFIC
COs	5				PR	OGRA		UICC	MES	(POs	5)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	2	-	-	-	3	-	2	3	3	2	2
CO2	2	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2
CO3	;	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2
CO4	•	3	3	3	3	2	-	-	-	3	-	2	3	3	2	2

-

CO5

-

-

-

CS1402	OPERATING SYSTEMS	L	T	Ρ	С
	Common for CSE, IT, AI-DS & AI-ML	3	0	0	3
OBJECTIVES			I I		L
 To under 	erstand the basic concepts and functions of operating systems.				
 To under 	erstand Processes and Threads				
 To anal 	ze Scheduling algorithms.				
 To under 	erstand the concept of Deadlocks.				
To anal	vze various memory management schemes.				
✤ To unde	erstand I/O management and File systems.				
To be fa	umiliar with the basics of Linux system and Mobile OS like iOS and Andro	hic			
					0
	OPERATING STSTEM OVERVIEW	Mor	noni		9
Uniputer Sys	he Momory Direct Momory Access Multiprocessor and Multipero Orga	nizo	tion		
Operating svs	tem overview-objectives and functions. Evolution of Operating S	Svet	om -	C	01
Computer Syst	em Organization Operating System Structure and Operations- System	n C	'alle		01
System Progra	ms OS Generation and System Boot		ans,		
	PROCESS MANAGEMENT				9
Processes – P	rocess Concept. Process Scheduling. Operations on Processes. Inter-	-pro	cess		•
Communication	: CPU Scheduling – Scheduling criteria. Scheduling algorithms.	Mult	iple-		
processor sche	eduling: Threads- Overview, Multithreading models, Threading issues:	Pro	cess		
Synchronization	n – The critical-section problem, Semaphores, Classical probl	ems	s of	С	02
synchronizatior	, Monitors; Deadlock – System model, Deadlock characterization, Met	hod	s for		
handling deadle	ocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, R	leco	very		
from deadlock.					
UNIT III	STORAGE MANAGEMENT				9
Main Memory	– Background, Swapping, Contiguous Memory Allocation,	Pa	ging,		
Segmentation,	Segmentation with paging, 32 and 64 bit architecture Examples; Virtual	Mer	nory	C	03
 Background, 	Demand Paging, Need for Page Replacement, Page Replacement Al	gori	thm,		•••
Allocation, Thra	shing; Allocating Kernel Memory, OS Examples.				
UNIT IV	FILE SYSTEMS AND I/O SYSTEMS				9
Mass Storage	system – Overview of Mass Storage Structure, Disk Structure, Disk Scl	hedu	uling		
and Managem	ent, swap space management; File-System Interface - File concept,	Ac	cess		
methods, Direc	tory Structure, Directory organization, File Sharing and Protection; File	Sys	stem	С	04
Implementation	- File System Structure, Directory implementation, Allocation Method	ds,∣	Free		
Space Manage	ement, Efficiency and Performance, Recovery; I/O Systems – I/O Ha	ardw	vare,		
Application I/O	Interface, Kernel I/O subsystem, Streams, Performance.				
				1	9
Linux System -	Design Principies, Kernel Modules, Process Management, Scheduling,		nory		
Management,	nput-Output Management, File System, Inter-process Communication	; 1010		С	05
OS - IOS and /	System	er, v	Joie		
		• 1	5 PE		20
TEXT BOOKS	TOTAL	*.			20
	n Silberschatz Deter Baer Calvin and Greg Gagno — Operating Sur	stor			nte
0th Edit	ion John Wiley and Sons Inc. 2012	SICII		10C	JIS,
JUL					

REFERENCE BOOKS 1. RamazElmasri, A. Gil Carrick, David Levine, —Operating Systems – A Spiral Approachll, Tata McGraw Hill Edition, 2010. 2. William Stallings, "Operating Systems – Internals and Design Principles", 7 th Edition, Prentice Hall, 2011. 3. AchyutS.Godbole, AtulKahate, —Operating Systemsll, McGraw Hill Education, 2016. 4. Andrew S. Tanenbaum, —Modern Operating Systemsll, 4th Edition, Pearson Education, 2014. 5. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education 6. Daniel P Bovet and Marco Cesati, -- Understanding the Linux kernell, 3rd edition, O'Reilly, 2005. 7. Neil Smyth, --iPhone iOS 4 Development Essentials -- Xcodell, Fourth Edition, Payload media, 2011. 8. http://nptel.ac.in/. 9. William Stallings, Operating Systems: Internals and Design Principles, Pearson, 9 th Edition (2018). **COURSE OUTCOMES** Upon completion of the course, students will be able to Analyze various scheduling algorithms. CO1 CO2 Understand deadlock, prevention and avoidance algorithms. CO3 Compare and contrast various memory management schemes. CO4 Understand the functionality of file systems. Perform administrative tasks on Linux Servers and Compare iOS and Android CO5 **MAPPING OF COs WITH POs AND PSOs**

COs				PR	OGR	AM O	UTCC	MES	(POs	5)			PROGI OUTC	RAM SPECIFIC		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2	

CS1403 DATABASE DESIGN AND MANAGEMENT (Lab Integrated) L	Р	C
Common to CSE, IT, AI-DS & AI-ML 3 0	2	4
OBJECTIVES		
I o learn the fundamentals of data models, ER diagrams and to study SQL and database design	relat	lional
• To familiarize relational model with Polational Database design and Normal Forms		
 To understand the fundamental concents of transaction processing, or 	ncurr	oncy
control techniques and recovery procedures	ncun	ency
To understand the implementation techniques by learning file organization a	nd G)uerv
Optimization.		
To understand the concepts of distributed databases, Object Oriented databases	and	XML
databases.		
UNIT I INTRODUCTION TO RELATIONAL DATABASES	9) + 6
Purpose of Database System – Views of data – Data Models – Database System Architectur	Э	
Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relation	ıl	
Mapping- Introduction to relational databases - Relational Model - Keys - Relational Algebra	a	
 – SQL fundamentals – Advanced SQL features 		
Lab Component		
Data Definition Commands, Data Manipulation Commands for inserting, deleting	[,] c	CO1
updating and retrieving Tables and Transaction Control statements .Database Queryin]	
- Simple queries, Nested queries, Sub queries and Joins		
 Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY UAN (INC) and Organization and Identification (COUNT, SUM, AVG, MAX and MIN), GROUP BY 	,	
HAVING and Creation and dropping of Views, Synonyms, Sequences.		
Conceptual Designing using ER Diagrams (identifying entities, attributes, keys an relationships between entities, conditionalities, generalization, encodedization at).	נ	
	0	- 6
Embedded SOL – Dynamic SOL – Eunctional Dependencies – Non-Joss Decomposition – Eirs		70
Second Third Normal Forms, Dependency Preservation – Boyce/Codd Normal Form – Mult	, _	
valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form		
Lab Component	C	CO2
 Simple Embedded SQL Program to demonstrate the concepts. 		
Database Design using normalization and Implementation for any application.		
UNIT III TRANSACTIONS	9) + 6
Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency Control	-	
Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transactic	٦	
Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery.		
Lab Component	0	CO3
Usage of Transaction control language commands like commit, rollback and save poin		
Develop Programs using BEFORE and AFTER Triggers for INSERT, DELETE and URDATE in the second se	t	
UNIT IV IMPLEMENTATION TECHNIQUES	- <u>9</u>) + 6
RAID – File Organization – Organization of Records III Files – Indexing and Hashing –Ordere	ג ע	
Processing Overview – Algorithms for SELECT and IOIN operations – Overview optimization	/ _	
using Heuristics and Cost Estimation	' <i>c</i>	201
Lab Component		504
 Implementation of B tree and B+ Tree. 		
 Develop programs to demonstrate hashing techniques. 		

UNIT	V		٨D٧	ANC	ED T(OPICS	S									9 + 6
Distrib	ributed Databases: Architecture, Data Storage, Data Fragmentation - Replication an cation Techniques for Distributed Database Design. Distributed Databases: Architecture														tion and	
Alloca	ition		nnique	es tor		Duted		abase	booo	gn. I d Dot	JISTRIDU	Jted D	atabas	es: Arch	nitecture,	
Data S	51018 + Do	age,	Trans	action			ig – C		-base Iodol						oncepts,	
Hiorar	i-Re			aluie חדח	з, О УМ	DiviG Schor	obje Na V		100ei,	ODI	_, 00	L - /		Jalabase	5. AIVIL	CO5
	com:	none	nt	DID,		Jener	na, A	Query	/.							
•	Da	tabas	se Co	nnect	tivitv v	vith F	ront E	nd To	ools							
•	Ca	ise S	tudy ι	using	real li	fe dat	abase	e appl	icatio	ns.						
PRA	٩СТ	ICAL	S: 30	PER	IODS		TH	IEOR	Y: 45	PER	ODS		тс	TAL:7	75 PERIC	DDS
TEXT	во	OKS														
1.	Ra Se	amez eventł	Elma n Edit	asri a ion, G	nd S Gobal	hamka Editic	ant B on,201	8. Nav 16	vathe;	Fun	damen	itals of	f Data	base Sy	vstems, l	Pearson,
2.	A : Hil	Silbei I,201	rscha 2.	tz, H	Korth	, S Sı	udarsl	han, "	Datab	base S	System	n and (Concep	ots", fifth	Edition I	McGraw-
3.	Vla O'l	ad Vla Reilly	ascea Med	anu, W ia, Inc	/endy :.,201	⁷ A. N 9.	eu, A	ndy C)ram,	Sam	Alapat	i, An Iı	ntroduo	ction to (Cloud Da	tabases,
REFE	RENCE BOOKS															
1.	. C.J.Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2004.															
2.	 C.J.Date, An infoduction to Database Systems, Eighth Edition, Pearson Education, 2004. Raghu Ramakrishnan. —Database Management SystemsII. Fourth Edition. McGraw-Hill College 												College			
	Pu	blicat	tions,	2015					•	-						C C
COUR	RSE	OUT	СОМ	ES												
Upon	con	nplet	ion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Ма	ap ER	t mod	lel to l	Relati	onal n	nodel	to pe	rform	datab	base de	esign e	effectiv	ely		
CO2	Ab	le to	unde	rstanc	the v	variou	s norr	nal fo	orms a	nd to	minim	ize the	redun	dancy in	the relat	ions
CO3	Ab	le to	know	the lo	ogic b	ehind	the tr	ansa	ction p	proces	ssing, o	concur	rency	control a	nd to rec	over
	sys	stem	from	failure	es.											
CO4	Ab	le to	orgar	nize, ir	ndex t	he file	es and	d to o	ptimiz	e the	given	queries	S			
CO5	Ab	le to	knov	w the	cond	cepts	of di	istribu	ited c	lataba	ases, (Object	Orien	ted data	abases a	nd XML
	da	tabas	ses													
					Ν	IAPP	ING (OF CO	Ds WI	TH P	Os AN	D PSC)s	[
COs	5			1	PR) GR		UTCC	MES	(POs	;)			PROG OUT(RAM SP	PECIFIC (PSOs)
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	2	1	1	-	-	2	2	2	2	3	3
CO2	:	3	3	3	3	2	1	1	-	-	2	2	2	2	3	3
CO3		3	3	3	3	2	1	1	-	-	2	2	2	2	3	3
CO4		3	3	3	3	2	1	1	-	-	2	2	2	2	3	3
CO5		3	3	3	3	2	1	1	-	-	2	2	2	2	3	3

ML1401	FOUNDATIONS OF MACHINE LEARNING	L	Т	Ρ	С
	Common for IT, AI-DS & AI-ML	3	0	0	3
OBJECTIVES					
 To under 	erstand the basic concepts of machine learning and probability theory.				
🔹 To appi	eciate supervised learning and their applications.				
To unde	erstand unsupervised learning like clustering and EM algorithms.				
🛠 To unde	erstand the theoretical and practical aspects of probabilistic graphical mo	dels	i.		
 To lear 	n other learning aspects such as reinforcement learning, representation	lea	rning	, de	еер
learning	, neural networks and other technologies.				
UNIT I	INTRODUCTION				9
Machine Leari	ning – Types of Machine Learning – Supervised Learning – Unsu	perv	ised		
Learning – Bas	sic Concepts in Machine Learning – Machine Learning Process – Weigh	it Sp	bace		
 Testing Mac 	nine Learning Algorithms – A Brief Review of Probability Theory –Turni	ng [Data	С	01
into Probabiliti	es – The Bias-Variance Trade-off, FIND-S Algorithm, Candidate Eli	mina	ation		
Algorithm					
UNIT II	SUPERVISED LEARNING				9
Linear Models	s for Regression – Linear Basis Function Models – The Bias-۱	/aria	ance		
Decomposition	- Bayesian Linear Regression - Common Regression Algorithms -	Sin	nple		
Linear Regres	ssion – Multiple Linear Regression – Linear Models for Classific	atio	n –	С	02
Discriminant F	unctions – Probabilistic Generative Models – Probabilistic Discriminative	Mo	dels	Ŭ	02
 Laplace App 	roximation – Bayesian Logistic Regression – Common Classification Alg	gorit	hms		
 – k-Nearest Ne 	ighbors – Decision Trees – Random Forest model – Support Vector Mac	:hine	es		
UNIT III	UNSUPERVISED LEARNING				9
Mixture Models	s and EM – K-Means Clustering – Dirichlet Process Mixture Models –	Spe	ctral		
Clustering – Hi	erarchical Clustering – The Curse of Dimensionality – Dimensionality Re	educ	ction	С	03
 Principal Co 	mponent Analysis – Latent Variable Models (LVM) – Latent Dirichlet A	lloca	ation	Ū	•••
(LDA)					
UNIT IV	GRAPHICAL MODELS				9
Bayesian Netw	rorks – Conditional Independence – Markov Random Fields – Learning	– N	aive	С	04
				<u> </u>	0
Doinforcomont	ADVANCED LEARNING	ornir			Э
Freemble Lee	Learning – Representation Learning – Neural Networks – Active Learning		ig –	6	0 5
	Tilling – Bootstrap Aggregation – Boostillig – Gradient Boostillig Machines	. – D	eep		05
Learning					De
	TOTAL	. 40			03
1 Ethem	Alpavdin "Introduction to Machine Learning" Third Edition. Prentice Hall	of Ir	ndia	201	5
REFERENCE	BOOKS	01 11	iaia,		0.
	abor Richon "Pattorn Recognition and Machine Learning" Springer 200	6			
2 Kevin F	Murnhy "Machine Learning: A Probabilistic Perspective" MIT Press 20	0. 012			
2. Revin F	Marcland "Machine Learning. A Frobabilistic Ferspective, With Fress, 20	ノコン. d 도c	dition	C	
Dross	\sim marsiand, machine learning – An Aigontinnic reispective, second			, U	
$\frac{1}{4} \text{Tom Mi}$	tchell "Machine Learning" McGraw-Hill 2017				
5 Trever	Hastia Robert Tibshirani Jaroma Friedman "The Elements of Statis	tical		rnir	na"
Second	Edition Springer 2008	ucal	LCa		·у ,
6 Fahio	Jelli "Python Data Analytics with Pandas Numny and Mathlotlih" S	Serr	nd F	Hih	on
Apress,	2018.	,000		.and	. ,

COUF	RSE O	UT	СОМ	ES												
Upon	comp	olet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to)					
CO1	Gain	ı kn	owled	lge al	oout b	asic o	conce	pts of	mach	nine le	earning	techn	iques			
CO2	Deve	elop	prec	lictive	mode	el bas	ed on	both	input	and c	output	data				
CO3	Abili	ty i	to ur	nderst	and	the ι	unsup	ervise	ed lea	arning	j algo	rithm	and c	limensio	nality re	duction
	tech	niqu	Jes													
CO4	Desi	gn :	syste	ms th	at use	e the a	appro	priate	grapł	nical r	nodels	of ma	chine l	earning		
CO5	Abili	ty to	o add	ress t	he pro	oblem	of lea	arning	, cont	rol str	ategies	s for au	utonom	nous age	nts	
					Μ	APPI	NG O	F CO	s WI	TH PC)s AN[D PSO	s			
COs	5				PR	OGR/		UTCC	MES	(POs	i)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	P	01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	2	2	2	2	2	2	2	2	3	3	2
CO2	2	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2
CO3	;	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2

CO4

CO5

DS1401	PYTHON PROGRAMMING FOR DATA SCIENCE	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
🛠 To fam	iliarize the data scientists, work environment like IPython and Jupyter.				
To und	lerstand ndarray object for efficient storage and manipulation of dense	dat	ta ar	rays	s in
python	using NumPy.				
To unc	lerstand DataFrame object for efficient storage and manipulation of labe	elled	/ co	lum	nar
data in	python using Pandas.				
 To per 	form data visualizations in python using Matplotlib.				
🛠 To pra	ctice machine learning algorithms in python using Scikit-Learn.				
UNIT I	IPYTHON: BEYOND NORMAL PYTHON				9
Shell and Not	ebook- Help and Documentation in IPython- Keyboard Shortcuts in the	IPy	thon		
Shell- IPython	Magic Commands- Input and Output History- IPython and Shell Com	nma	nds-	С	01
Errors and De	bugging- Profiling and Timing Code.				
UNIT II	INTRODUCTION TO NUMPY			1	9
Understanding	Data Types in Python- The Basics of NumPy Arrays- Computation on	Nu	mPy		
Arrays: Univer	sal Functions- Aggregations- Computation on Arrays- Comparisons, Mas	sks,	and	С	02
Boolean Logic	- Fancy Indexing- Sorting Arrays- Structured Data.				
UNIT III	DATA MANIPULATION WITH PANDAS			1	9
Installing and	Using Pandas- Introducing Pandas Objects- Data Indexing and Se	elec	tion-		
Operating on	Data in Pandas- Handling Missing Data- Hierarchical Indexing- Co	mbi	ning		
Datasets- Agg	regation and Grouping- Pivot Tables- Vectorized String Operations- Work	king	with		03
Time Series- H	ligh-Performance Pandas.				
UNIT IV	VISUALIZATION WITH MATPLOTLIB				9
General Matp	otlib Tips- Simple Line Plots- Simple Scatter Plots- Visualizing Errors-	De	nsity		
and Contour	Plots- Histograms, Binnings, and Density- Customizing Plot L	ege	nds-		
Customizing	Colorbars- Multiple Subplots- Text and Annotation- Customizing	Ti	cks-	С	04
Customizing	Matplotlib- Three-Dimensional Plotting in Matplotlib- Geographic Da	ata	with		
Basemap- Vis	ualization with Seaborn.				
UNIT V	MACHINE LEARNING WITH SCIKIT-LEARN				9
Machine Lear	ning- Introducing Scikit-Learn- Hyperparameters and Model Validation-	Fea	ture		
Engineering-	Naive Bayes Classification- Linear Regression- Support Vector Ma	achi	nes-		05
Decision Tree	es and Random Forests- Principal Component Analysis- k-Means Clu	uste	ring-		05
Gaussian Mixt	ure Models- Application: A Face Detection Pipeline.				
	TOTAL	: 4	5 PE	RIO	DS
TEXT BOOKS	6				
1. Jake V	anderPlas, "Python Data Science Handbook: Essential Tools for Work	ing	with	Da	ta",
O'Reill	y, 2017				
REFERENCE	BOOKS				
1. Wes M	cKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy	, ar	nd IP	ythc	on",
O'Reill	y, 2nd Edition,2018.				
2. Python	for data science for dummies 2nd Edition, John Paul Mueller, Luca Mass	aro	n, W	iley	

COUF	RSE	OUT	COM	ES												
Upon	cor	mplet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to)					
CO1	Us	se dat	ta scie	entists	s work	envir	onme	ent like	e IPyt	hon a	nd Jup	yter.				
CO2	Us	se nda	array	objec	t for e	fficier	nt stor	age a	ind ma	anipul	ation c	of dens	e data	arrays ir	n python	using
	Nu	umPy														
CO3	Us	se Da	ataFra	ime d	object	for e	efficie	nt sto	orage	and	manip	ulatior	n of la	beled/co	lumnar	data in
	ру	bython using Pandas. Perform data visualizations in python using Matpletlih														
CO4	Pe	Perform data visualizations in python using Matplotlib.														
CO5	Us	se machine learning algorithms in python using Scikit-Learn.														
					Μ	APPI	NG O	F CO	s WI	ГН РС)s AN[D PSO	S			
					DD				MES		•			PROG	RAM SP	ECIFIC
COs	5				FN					(FO3	'			OUTC	OMES (PSOs)
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	3	2	2	1	2	1	2	3	3	3	3
CO2	2	3	3	3	3	3	2	2	1	2	1	2	3	3	3	3
CO3	5	3	3	3	3	3	2	2	1	2	1	2	3	3	3	3

CO4

CO5

DS1407			r		SCIE			דא סר							т	D	C
031407					SCIL		LAD	JNAI		03111	5 7 1 1			۲	0	г Д	2
OBJECTI	VFS													0	0	4	2
♦ To	nrov	ide kr	nowle	dae o	f Data	a Expl	oratio	n usir	na Pro	oramr	nina A	Pls an	d Freelv	Avai	ilahle		
To	ols.		101110	ugo o	Duit		oradio		ig i it	grann	ining / (arrooly	/			
To	unde	erstan	d the	conc	ept of	Data	Form	ation.									
✤ To	visu	alize t	he da	ita usi	ng va	rious	Pvtho	n AP	Ι.								
✤ To	use	latest	pytho	on libr	aries	for Da	ata Sc	ience	in Re	al Tim	e App	lication	IS.				
LIST OF E	EXPE	RIME															
1. Pvth	on E	nviror	ment	Setu	o usin	a Ana	acond	a.								_	
2. Perfe	orm N	Nathe	matic	al Co	mputi	ng us	ing Nu	umPy	- Arra	ay and	Matric	es.				C	01
3. Data	Mar	nipula	tion u	sing I	Panda	as – Ii	mport	ing D	ata, L	Jnderst	anding	g Data	Frame,	Inde	xing		
Data	a Frar	nes, ∖	/iew a	and S	elect	Data	Demo					-			0		
4. Data	a Man	nipulat	tion u	sing F	Panda	s – D	ata O	perati	ons, I	Vissing	g Value	es, Rer	naming C	Colur	nns,	С	02
File	Read	and	Write,	Pano	das So	QL O	peration	ons.									
5. Scie	ntific	Com	puting	g usin	g Sci	Ру - \$	Specia	al Fur	nction	Packa	age, Li	near A	lgebra -	Fea	ature		
Engi	neeri	ng						_									
	ntific	Comp	outing	usinę	g SciF	<u>'y - Li</u>	near l	Regre	ssion	- Supp	ort Ve	ctor Ma	achines			_	
7. Scie	ntific	Com	puting	g usii inaina	ng So	CIPy -	- Nai	ve Ba	ayes	Classi	fication	n, Dec na	sision Ir	ees	and	6	<u></u>
Rain 8 Data	Vieu	ruies Ializat	15, FI	sing N	l Con Intolo	tlib _		alysis s of r	, K-IVIO			ILY.	M Scatt	or D	lote		03
0. Data Line	Bar	Pie (Chart	sing i	hatpic	110 -	туре	301	1013 3		51101		in, ocau		1013,		
Eirio,	, Dui,	110 0	Jilant.										ΤΟΤΑΙ	. : 60) PE	RIO	DS
REFEREN		BOOK	(S														
1. Ch	irag :	Shah,	" A H	ands-	on Int	roduc	tion to	o Data	a Scie	ence", (Cambr	idge U	niversity	Pres	ss, 2	020.	
2. Ste	epher	n Klos	sterma	an, "D	ata S	cienc	e proj	ects v	vith P	ython:	A case	e study	v approa	ch to	suc	cess	sful
da	ta sci	ience	proje	cts us	ing P	ython	, pano	das ar	nd sci	kit-lear	n", Pa	ckt Puł	olishing l	_td.,	2019)	
3. Pe	ter N	lorgar	ו, "Da	ita An	alysis	from	scrat	ch wi	th pyt	hon: B	eginne	er guid	e using	oytho	on, p	and	as,
Nu	impy,	SCI	(IT-lea	arn, IF	Pytho	n, Ter	nsorFl	ow ar	nd Ma	tplotlib	", AI S	cience	s, 2018.				
WEB REF	ERE	NCES	5														
1. htt	ps://s	socialr	esea	rchme	ethods	s.net/ł	kb/sta	tprep.	php								
2. htt	ps://v	vww.r	oblec	deskto	p.cor	n/lear	n/pytł	non/da	ata-vis	sualiza	tion-m	atplotli	b				
3. htt	ps://v	vww.c		Jest.ic	polog	/pyind	on-ap	-lulor	iai/								
		COM	E5			udana		haa	hla ta								
	doret	tand t		ncont	of da	ta for	.s will matio		tho h	oln of	crowlin	na and		fΛD	le		
CO2 An	nlv v	ariou	s Da	ta cle	aninc	u dat	a tra	nsforr	natior	n data	expla	ration	and da	ita v	is visua	lizat	ion
tec	chniai	ues in	Pvth	on pro	odram	, uai mina	langi	lade.	nation	i, uate	Слрі	Jation			1300	πΖαι	1011
CO3 Ex	plore	and	/isual	ize da	ita usi	ing va	rious	data :	scien	ce tool	s and i	oython	APIs.				
				M	APPI	NG O	F CO	s WIT	TH PC)s AN[) PSO	S					
									(00-				PROG	RAM	SPE	ECIF	-IC
COs				PR	JGRA				(PUS	5)			OUTC	OME	ES (F	so	s)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PS	O 3
CO1	3	3	3	2	2	-	_	2	2	2	_	3	3		3	2	2
CO2	3	3	3	2	2			2	2	2		3	3		3	2	2
CO3	2	2	2	- 0	- 0			- 0	2	- -		2	2		2	2	- >
003	5	5	5	2	2	-	-	2	2	2	-	5	5	Ċ	,	4	-

ML140	8 MACHINE LEARNING LABORATORY	L	Т	Ρ	С
	Common for IT, AI-DS & AI-ML	0	0	4	2
OBJE * * *	CTIVES To make use of Data sets in implementing the machine learning algorithms To implement the machine learning concepts and algorithms in any suitable lan To understand the practical aspects of probabilistic graphical models.	gua	ge of	choi	ice
LIST C	FEXPERIMENTS				
1.	Implement and demonstrate the FIND-S algorithm for finding the most hypothesis based on a given set of training data samples. Read the training da .CSV File	spe ta fro	ecific om a	- C(01
2.	For a given set of training data examples stored in a .CSV file, implen demonstrate the Candidate-Elimination algorithm. Output a description of the hypotheses consistent with the training examples.	nent set (and of all		51
3.	Write a program to demonstrate the working of the decision tree based ID3 a Use an appropriate data set for building the decision tree and apply this know classify a new sample	ılgori vledç	thm. ge to		
4.	Build an Artificial Neural Network by implementing the Back propagation algor test the same using appropriate data sets	ithm	and	C	22
5.	Write a program to implement the naïve Bayesian classifier for a sample train set stored as a .CSV file. Compute the accuracy of the classifier, considering data sets.	ning Few	data test		
6.	Assuming a set of documents that need to be classified, use the naïve Classifier model to perform this task. Built-in Java classes/API can be used to program. Calculate the accuracy, precision, and recall for your data set.	Baye write	esian e the		
7.	Write a program to construct a Bayesian network considering medical data. Use model to demonstrate the diagnosis of heart patients using standard Heart Dise Data Set. You can use Java/Python ML library lasses/API	e this ease	3		
8.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same for clustering using k-Means algorithm. Compare the results of these two a and comment on the quality of clustering. You can add Java/Python M lasses/API in the program.	data Igorit L lik	a set thms prary	C	23
9.	Write a program to implement k-Nearest Neighbor algorithm to classify the iris Print both correct and wrong predictions. Java/Python ML library classes can for this problem.	data be i	set. used		
10	Implement the non-parametric Locally Weighted Regression algorithm in or data points. Select appropriate data set for your experiment and draw graphs	der	to fit		
	ΤΟΤΑ	L:6	0 PE	rioi	DS
REFE	RENCE BOOKS				
1.	Aurelien Geron , "Hands-On Machine Learning with Scikit-Learn, Keras, ar Concepts, Tools, and Techniques to Build Intelligent Systems", Second Edition	nd To , O'R	ensor teilly	Flov Med	v: ia
2.	Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Apress, 2018	Seco	ond E	Editio	on,
3.	Practical Machine Learning with Python: A Problem-Solver's Guide to Build Intelligent Systems" Dipanjan Sarkar, Raghav Bali, Tushar Sharma, Apress.	ding	Real	-Wo	rld

WEB REFERENCES

- 1. https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
- 2. Web Resources: https://www.anaconda.com/enterprise-machine-learning-getting-started/
- 3. https://www.tutorialspoint.com/machine_learning_with_python/index.htm

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Update the general and specific boundary for each new example in concept learning

CO2 Develop supervised learning predictive model for general data set

CO3 Ability to apply knowledge representation and machine learning techniques to real world problems

COs				PR	OGR/		итсс	MES	(POs	i)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		

HS131	10	PROFESSIONAL SKILLS LABORATORY	L	Т	Ρ	С
		Common for CSE & AI-DS	0	0	2	1
OBJE	CTIVES					
*	Enhanc	e the Employability and Career Skills of students				
*	Orient t	he students towards grooming as a professional				
*	Make th	em Employable Graduates				
*	Develop	their confidence and help them attend interviews successfully.				
		LIST OF EXPERIMENTS				I
UNIT						6
Introdu	uction to	Soft Skills- Hard skills & soft skills - employability and career Skills-G	roor	ming		
as a p	profession	nal with values—Making an Oral Presentation-Planning and preparing	a m	odel		
preser	ntation; C	organizing the presentation to suit the audience and context; Connecting) with	n the	С	01
audier	nce durir	ng presentation; Projecting a positive image while speaking; Empl	nasis	s on		
effecti	ve body l	anguage-General awareness of Current Affairs.				1
UNIT	11				1	6
Self-In	ntroductio	n-organizing the material - Introducing oneself to the audience – introdu	JCING	g the		
topic ·	 answe 	ring questions – individual presentation practice— Making a Pow	er F	Point		
Prese	ntation	Structure and format; Covering elements of an effective presentation	on; E	Body		
langua	age dyn	amics. Making an Oral Presentation–Planning and preparing a	a m	odel	С	02
preser	ntation; C	rganizing the presentation to suit the audience and context; Connecting	with	n the		
audier	nce durir	ng presentation; Projecting a positive image while speaking; Empl	nasis	s on		
effecti	ve body l	anguage				1
UNIT						6
Introdu	uction to	Group Discussion— Participating in group discussions – understanding	ng g	roup		
dynam	nics - bra	instorming the topic questioning and clarifying -GD strategies- Struc	ture	and	С	O 3
dynam	nics of a	GD; Techniques of effective participation in group discussion; Prep	arinç	g for		
group	discussio	on; Accepting others' views / ideas; Arguing against others' views or idea	as, e	tc		_
UNIT	V				1	6
Basics	s of publi	c speaking; Preparing for a speech; Features of a good speech; Speaki	וg w	ith a		
microp	phone. (F	amous speeches may be played as model speeches for learning the	ne a	rt of		
public	speakinę	 Interview etiquette – dress code – body language – attending job interview 	ervie	ws–	С	04
teleph	one/skyp	e interview -one to one interview &panel interview –Job Interviews: purp	ose	and		
proces	ss; How t	o prepare for an interview; Language and style to be used in an interview	<i>w</i> ; Т <u>у</u>	ypes		
of inte	rview que	estions and how to answer them.				
UNIT	V					6
Recog	nizing c	ifferences between groups and teams- managing time managing	str	ess-	С	05
netwo	rking pro	ofessionally- respecting social protocols understanding career mana	igem	nent-		
develo	pping a lo	ng- term career plan making career changes				
		TOTAL	_ : 30	0 PE	rio	DS
REFE	RENCE	BOOKS				
1.	Butterfie	eld, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015				
2.	E. Sur	esh Kumar et al. Communication for Professional Success. Orie	ent	Blac	KSW	an:
	Hydera	bad, 2015				
3.	Raman	Meenakshi and Sangeeta Sharma. Professional Communication. O	xforc	d Un	vers	sity
	Press: (Dxford, 2014				
4.	S. Harił	aranetal. Soft Skills. MJP Publishers: Chennai, 2010				
5.	Interact	English Lab Manual for Undergraduate Students,. OrientBalckSwan: Hy	/dera	abad	20	16.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Make effective presentations

CO2 Participate confidently in Group Discussions

CO3 Attend job interviews and be successful in them.

CO4 Develop adequate Soft Skills required for the workplace

CO5 Develop their speaking skills to enable them speak fluently in real contexts

COs				PR	OGR	AM O	итсс	MES	(POs	5)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	1	2	3	-	-	2	1	2
CO2	-	1	-	2	-	-	-	-	-	3	-	-	1	-	2
CO3	-	2	-	3	-	-	-	-	1	2	-	-	-	-	2
CO4	-	-	-	-	1	-	-	-	2	2	-	-	-	-	2
CO5	-	2	1	1	2	-	2	-	-	3	-	-	1	2	2

DS150	OPTIMIZATION FOR DATA ANALYSIS	L	Т	Ρ	С
		4	0	0	4
OBJE	CTIVES				-
*	To use convex sets and convex functions				
*	To understand Regression analysis				
*	To learn clustering and classification				
*	To learn multivariate analysis				
UNIT	CONVEX SETS				9
Iteratio	on principles- Fixed point algorithms- Convex sets and convex cones- Best appro	xim	ation	1	1
paradi	gms- Projection methods in convex feasibility problems- applications to data fu	sion	and	C	;01
image	recovery				
UNIT	I CONVEX FUNCTIONS			•	9
Conve	x functions-Conjugation of convex functions-Duality in convex optimiza	tion	-Sub)	·
differe	ntial calculus-Sub gradient algorithms for convex feasibility and best approx	kima	tion	C	;02
applic	ations in inverse problems				
UNIT	II REGRESSION ANALYSIS				9
Regre	ssion Analysis: Linear Regression-Logistic Regression- Polynomial Reg	gres	sion-	c	:03
Stepw	ise Regression- Ridge Regression- Lasso Regression- ElasticNet Regression				
UNIT	V CLUSTER ANALYSIS AND CLASSIFICATIONS				9
Cluste	r Analysis: Affinity Propagation- Agglomerative Clustering- BIRCH- DBSCAN- I	k-Me	eans	,	
Mini-B	atch k-Means, Mean Shift, OPTICS, Spectral Clustering, Mixture of (Gais	sian,	C	:04
Classi	fication Analysis: Naïve Bayes, Stochastic gradient dissent, k-Nearest No	eighl	bors	,	
Rando	m Forest, Support Vector Machine				
					9
Rando	m vectors and matrices – Mean vectors and covariance matrices – Multivariat	e no	orma		ОГ
densit	and its properties – Principal components - Population principal components –	Prin	сіра		;05
compo		. 4			
DEEE		4	JFE		03
REFE					
1.	H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Ope	erato	rin	eory	/ IN
2	Hilbert Spaces, 2nd ed. Springer, New York, 2017	otio	a ta	Lin	oor
Ζ.	Pogrossion Analysis Wiley 2017	CUO	1 10	LII	lear
3	Careth James Daniela Witten Trover Hastie Rob Tibshirani An Introducti	on t	o ct	otict	tical
Э.	Learning Springer	JIII	0 51	alisi	llai
COLIE					
	SE OUICOMES				
	completion of the course, students will be able to				
001	Understand and apply convex sets for data fusion				
CO2	Understand and apply convex functions in inverse problems				
CO3	Apply regression analysis for forecasting				
CO4	Apply clustering and classification to classify the objects				
CO5	Understand and apply multivariate analysis				
550					

Approved by Second BOS Meeting Held on 20.01.2022

COs				PR	OGR/	AM O	итсс	MES	(POs	;)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	2	-	2	-	-	2	2	1	-	2	3	3	2		
CO2	3	3	2	-	2	-	-	2	2	1	-	2	3	3	2		
CO3	3	3	3	-	2	-	-	2	2	1	-	2	3	3	2		
CO4	3	3	3	-	2	-	-	2	2	1	-	2	3	3	2		
CO5	3	3	3	-	2	-	-	2	2	1	-	2	3	3	2		

DS1502	ADVANCED ARTIFICIAL INTELLIGENCE	L	Т	Ρ	С
	Common for AI-DS & AI-ML	3	1	0	3
OBJECTIVES					
 To ana 	lyze Probabilistic Reasoning for knowledge				
To give	a understanding of main abstractions of decision making.				
 To unc 	erstand a wide variety of learning algorithms.				
 To und 	erstand the different ways of designing software agents				
					9
Uncertainty -	Basic Probability Notation – Axioms of Probability – Bayes Rule - Prob	babil	listic	-	
Reasoning –	Bayesian Networks – Semantics – Interence – Other Approaches to U	nce	rtain	С	01
Reasoning – I					
					9
Utility Theory	- Utility Functions – Decision Networks – Value of Information – I	Deci	sion	-	
I heoretic Exp	ert Systems – Sequential Decision Problems – Value Iteration – Policy Ite	eration	on –	С	02
Decision Theo					
					9
Learning from	Observations - Forms of Learning – Inductive Learning – Learning I		sion	0	<u></u>
Noïvo Rovos I	Addls Learning - Explanation Based Learning - Learning with Complete	e Da	la –	C	03
			1113		٩
Architecture f	r Intelligent Agents – Examples - Agent communication – KOMI - KIE	_ F			3
ACL - Speed	h Acts - Argumentation among Agents – Trust and Reputation in Mu	Ilti-a	aent	С	04
svstems			gon		• ·
UNIT V	ROBOTICS				9
Robot Hardwa	are – Robotic Perception – Planning to Move, Planning Uncertain Move	men	its –	•	~ -
Moving – Rob	otic Software Architectures – Application Domains			C	05
	ΤΟΤΑΙ	L: 45	5 PEF	RIO	DS
TEXT BOOK	, ,				
1. Russe Editior	I S and Norvig P, - Artificial Intelligence: A Modern Approach", Pren , 2009.	tice	Hall,	Tł	nird
2. Gerha	d Weiss, - Multiagent Systems: A Modern Approach to Distributed Artific	cial I	ntellig	gen	ce,
Secon	d Edition, The MIT Press, 2013.				
REFERENCE	BOOKS				
1. Kaush	k, Artificial Intelligence, Cengage Learning, 1st Edition, 2011				
2. David	L. Poole and Alan K. Mackworth, - Artificial Intelligence: Foundations of	Co	mputa	atio	nal
Agente	, Cambridge University Press, 2010.				
3. Kevin	Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill-	200	8.		
4. Nils J.	Nilsson,- The Quest for Artificial Intelligence, Cambridge University Pro-	ess,	2009		
	ICOMES				
COURSE OU					
Upon comple	tion of the course, students will be able to				
COURSE OU Upon comple	tion of the course, students will be able to theoretical knowledge about principles for logic-based representation ar	nd re	eason	ing	
COURSE OU Upon comple CO1 Acquir CO2 Develo	tion of the course, students will be able to theoretical knowledge about principles for logic-based representation ar p a decision-making model that utilizes Artificial Intelligence.	nd re	eason	ing	
COURSE OU Upon comple CO1 Acquir CO2 Develo CO3 Develo	tion of the course, students will be able to theoretical knowledge about principles for logic-based representation ar p a decision-making model that utilizes Artificial Intelligence. p an understanding what is involved in learning models from data.	nd re	eason	ing	
COURSE OU Upon comple CO1 Acquir CO2 Develo CO3 Develo CO4 Select	tion of the course, students will be able to theoretical knowledge about principles for logic-based representation ar p a decision-making model that utilizes Artificial Intelligence. p an understanding what is involved in learning models from data. appropriately from a range of techniques when implementing intelligent sy	nd re yste	eason ms	ing	

MAPPING OF COs WITH POs AND PSOs PROGRAM SPECIFIC PROGRAM OUTCOMES (POs) OUTCOMES (PSOs) COs PO6 PSO2 **PO1** PO2 PO3 PO4 PO5 P07 PO8 PO9 PO10 PO11 PO12 PSO1 PSO3 CO1 --CO2 --CO3 --CO4 --CO5 --

			1		
DS1503	DATA MINING	L	Т	Ρ	С
		3	1	0	3
OBJECTIVES					
 Learn d 	ata mining concepts understand association rules mining				
Discuss	classification algorithms learn how data is grouped using clustering tech	nniq	ues		
 To deve 	elop the abilities of critical analysis to data mining systems and applicatio	ns			
 To impl 	ement practical and theoretical understanding of the technologies for dat	a m	ining		
 To under 	erstand the strengths and limitations of various data mining models				
UNIT I	INTRODUCTION				9
Introduction, V	/hat is Data Mining, Definition, KDD, Challenges, Data Mining Task	ks,	Data		
Preprocessing,	Data Cleaning, Missing data, Dimensionality Reduction, Feature	Su	ıbset		••••
Selection, Disc	retization and Binaryzation, Data Transformation; Measures of Simila	arity	and		,01
Dissimilarity- B	asics				
UNIT II	ASSOCIATION RULE				9
Problem Defin	ition, Frequent Item Set Generation, The APRIORI Principle, Supp	ort	and		
Confidence M	easures, Association Rule Generation; APRIOIRI Algorithm, The	Par	tition	C	:02
Algorithms, FF	Growth Algorithms, Compact Representation of Frequent Item Set-	Мах	kimal		-
Frequent Item	Set, Closed Frequent Item Set				
				1	9
Problem Defin	Ition, General Approaches to solving a classification problem, Evalu	atio	n or		
	ribute test conditions. Measures for Selecting the Rest Split Algor	.noa ithr	s ior		• ^ 2
Decision tree	Induction : Naive-Bayes Classifier Bayesian Belief Networks: K-	No	i iui arost		,03
neighbor class	fication-Algorithm and Characteristics	NUC	arcor		
	CLUSTERING				9
Problem Defin	ition. Clustering Overview. Evaluation of Clustering Algorithms. Pa	rtitic	nina		
Clustering-K-M	eans Algorithm, K-Means Additional issues, PAM Algorithm; Hiel	rarc	hical		
Clustering-Agg	lomerative Methods and divisive methods, Basic Agglomerative Hier	rarc	hical	С	:04
Clustering Algo	prithm, Specific techniques, Key Issues in Hierarchical Clustering, Streng	gths	and		
Weakness; Ou	tlier Detection				
UNIT V	WEB AND TEXT MINING			_	9
Introduction, w	eb mining, web content mining, web structure mining, we usage mini	ng,	Text		
mining –unstru	actured text, episode rule discovery for texts, hierarchy of categori	ies,	text	C	;05
clustering					
	IOTAL	.:4	o PE	RIC	צטי
	lan Mishaling Kambon Data Mining Osma (. L	
1. Jlawel	Han, Micheline Kamber, Data Mining- Concepts and Techniques, Mol	rgar	n Kai	utma	ann
2 Papa-N	ers, Ersevier, 2 Edition, 2000 ing Tan Vinin Kumar Michael Steinbanch Introduction to Data M	linin	a D	oor	eon
Z. Tang-N Educati	on		у, і	car	3011
3. Hongbo	Du Cengage , Data mining Techniques and Applications, India Publishi	na			
		''9			
	Pujari Data Mining Techniques, 3rd Edition, Universities, Press				
	eresh Kumar B.F.sware Reddy Janadish S.Kalimani Data Minin	αF	Princi	nlog	: ጸ.
2. 1.v Ov Annlica	tions Elsevier	9 '		000	, 0
3. Vikaran	n Pudi, P Radha Krishna, Data Mining. Oxford University Press				
	,,				

COUL	COURSE OUTCOMES																	
Upon	con	nplet	ion o	LS of the	cours	se. st	udent	ts will	l be a	ble to)							
CO1	CO1 Apply suitable data pre-processing methods for the given dataset																	
CO2	Ge pro	nera oblem	te ass າ	sociat	ion ru	les us	ing a	lgorith	nms lil	ke Ap	riori, F	requer	nt Patte	ern tree f	or the giv	ven		
CO3	Ana	alyze	e the p	perfor	manc	e of d	ifferei	nt clas	ssifica	tion a	lgorith	ms						
CO4	Us and	Jse clustering techniques such as partitioning, hierarchical, density based for grouping data ind processing massive data set																
CO5 Classify web pages, extracting knowledge from the web																		
MAPPING OF COs WITH POs AND PSOs																		
					PR	OGR		итсс	MES	(POs	:)			PROG	RAM SP	ECIFIC		
COs	s _														OUTCOMES (PSOs)			
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3		
CO1		1	2	2	1	1	-	-	-	-	1	1	1	3	3	2		
CO2	2	2	3	2	2	1	-	-	-	-	1	1	1	3	3	2		
CO3	5	3	2	2	2	2	-	-	-	-	1	1	1	3	3	2		
CO4	Ļ	3	2	2	2	1	-	-	-	-	1	1	1	3	3	2		
CO5	;	2	2	2	2	1	-	-	-	-	1	1	2	3	3	2		

DS1504	EXPLORATORY DATA ANALYSIS	L	Т	Ρ	C
		3	1	0	3
OBJECTIV	ES				
🛠 To le	earn the fundamentals Exploratory Data Analysis				
🛠 Τοι	nderstand the theoretical foundation of working with data.				
🛠 To le	earn essential statistical measures				
🛠 Τοι	nderstand time-series data and how to perform EDA on it.				
🛠 Tog	et knowledge about quality on data analysis.				
UNIT I	INTRODUCTION TO EXPLORATORY DATA ANALYSIS				Τ
Exploratory	Data Analysis Fundamentals - Understanding data science - The signific	canc	e of		
EDA - Maki	ng sense of data - Comparing EDA with classical and Bayesian analysis - S	Softv	vare	С	;0
tools availal	ole for EDA - Visual aids for EDA – Types of Charts				
UNIT II	DATA TRANSFORMATION				Τ
EDA with p	ersonal Email - Loading the dataset - Data transformation - Data Analysis -	Mer	ging		
database-st	yle data frames - Transformation techniques - Benefits of Transformation			C	;0
UNIT III	DESCRIPTIVE STATISTICS, GROUPING DATASETS				Τ
Understand	ing statistics - Measures of central tendency - Measures of dispersion - C	Grou	ping		_
Datasets -	Jnderstanding groupby() - Data aggregation - Pivot tables and cross-tabu	Ilatio	ons -	С	;0
Correlation	- Types of analysis - multivariate analysis using the Titanic dataset				
UNIT IV	TIME SERIES ANALYSIS, MODEL DEVELOPMENT AND EVALUATI	ON			Τ
Understand	ing the time series - Time Series Analysis with Open Power System - Hy	poth	esis		_
Testing and	Regression - Hypothesis testing - p-hacking - Understanding regression	- M	odel	С	;0
developmer	t and evaluation				
UNIT V	MACHINE LEARNING, EDA ON WINE QUALITY DATA ANALYSIS			1	Τ
Types of m	achine learning - Supervised learning - Unsupervised learning - Reinfo	rcer	nent		_
Learning - I	Inified machine learning workflow - Disclosing the wine quality dataset - A	naly	zing	С	;0
red wine - A	nalyzing white wine – Model Development and Evaluation		-		
	TOTAL	. : 4	5 PE	RIC	D
TEXT BOO	KS				
1. Sure	sh Kumar Mukhiya, Usman Ahmed, "Hands-On Exploratory Data Analys	sis w	/ith F	vth	101
Perf	orm EDA techniques to understand, summarize, and investigate your data	a". F	irst E	, Editi	ioi
Pac	t Publication, 2020.	,			
REFERENC	EBOOKS				
1 ΔΙΙ _Ο	B Downey "Think State: Exploratory Data Analysis" Second I	Editi	on	Ore	مiا
	ications 2014		UII,	010	-
2 Gler	n I Myatt and Wayne P Johnson "Making sense of Data: A prac	rtica	I Gu	iido	
2. Oici Evn	oratory Data Analysis and Data Mining" Second Edition Wiley Publications	200a	1 <i>4</i>		
⊂∧pi 3 Clor	n I Myatt and Wayne P Johnson "Making Sense of Data II. A Practical	, 20 I Gu	ide t)a
		. Ou		0 0	a
		Inn-			

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand the fundamental concepts of exploratory data analysis using Python
CO2	Implement EDA with personal mail and to work with data transformation

CO3 Understand the variance and standard deviation of datasets

CO4 Describe the visualization and analysis of time series and survival calculations.

CO5 Understand different types of machine learning and to apply all the techniques learnt to perform EDA on a wine quality dataset.

COs				PR	OGR/	AM O	итсс	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2		
CO2	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2		
CO3	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2		
CO4	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2		
CO5	3	3	3	3	2	2	2	2	2	2	2	2	3	3	2		

DS1507	DATA PREPARATION AND ANALYSIS LABORATORY	<u>L</u>	Т	Ρ
		0	0	4
DBJECTIVE	S			
 Learr 	pre-processing method for multi-dimensional data			
Praci	ce on data cleaning mechanisms			
 Learr Device 	various data exploratory analysis			
IST OF EX	PERIMENTS			
1. DATA Data data	A PRE-PROCESSING AND DATA CUBE pre-processing methods on student and labour datasets Implement data warehouse on 3-dimensional data	a cub	e foi	
2. DAT				C
Imple mech	ment various missing handling mechanisms, Implement various noisy anisms	han	dling	
3. EXPI	ORATORY ANALYSIS			
Deve asse	op k-means and MST based clustering techniques, Develop the method sment of clusters for given dataset	golot	y foi	
4 ASS	CLATION ANALYSIS			
Desic	n algorithms for association rule mining algorithms			
				C
5. П ТР	OTHISIS GENERATION	uloo:		
Confi	e the hypothesis for association rules to discovery of strong association r	ules,	Use	
6. TRA	ISFORMATION TECHNIQUES			
Cons	truct Haar wavelet transformation for numerical data, Construct	prin	cipa	
comp				_
7. DAT	VISUALIZATION			
Imple	ment binning visualizations for any real time dataset, Implement linear r	egres	ssion	
techr	iques			
8. CLU	STERS ASSESSMENT			
Visua	lize the clusters for any synthetic dataset, Implement the program for c	onve	rting	
the c	usters into histograms			
9. HIER	ARCHICAL CLUSTERING			
Write	a program to implement agglomerative clustering technique, write a plant	rogra	m to	
imple	ment divisive hierarchical clustering technique			
10. SCA	ABILITY ALGORITHMS			
Deve	op scalable clustering algorithms, Develop scalable a priori algorithm			
	TOTA	L:6	0 PE	RIC
REFERENC	EBOOKS			
1 Sinar	Ozdemir "Principles of Data Science" Packt Publishers 2016			
	//paginas to up pt/, ac/files 1112/work 02 Data Proparation adf			
1. <u>mups</u> 2. https://	//payinas.ie.up.pv~eu/iies_iiiz/week_us_uala_riepaialluii.pul			
2. <u>milles</u> 3. https://www.com	//www.quest.com/solutions/data-preparation-and-analysis/			
	// ₩₩₩.yuesi.com/solutions/uata-preparation-anu-analysis/			

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Apply data pre-processing and data cleaning methods on multidimensional dataset
CO2	Apply various data exploratory analysis on the given dataset
CO3	Apply clustering algorithm to spilt the dataset and visualization technique to retrieve insights on
	the dataset

COs				PR	OGR/	AM O	UTCC	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	1	1	-	-	2	2	2	-	2	3	3	2			
CO2	3	3	3	1	1	-	-	2	2	2	-	2	3	3	2			
CO3	3	3	3	1	1	-	-	2	2	2	-	2	3	3	2			

			-			
DS150	ADVANCED ARTIFICIAL INTELLIGENCE LABORA	TORY	L	Т	Ρ	С
	Common for AI-DS & AI-ML		0	0	4	2
OBJE * * * *	 ECTIVES To be able to reason under uncertainty of the real-world. To understand supervised learning techniques. To increase knowledge about learning with hidden variables. To understand how to use natural language processing. To get familiarized with basics of robotics. 					
	LIST OF EXPERIMENTS					
1.	Implement a Python program of automatic Tic Tac Toe game using	random nur	nber			
2.	Apply Bayes' Rule to a scenario of drug screening, which is a n federal or many other jobs which promise a drug-free work environmed	nandatory te ment.	esting	g for		
3.	Demonstrate the application of Bayesian Network for the Monty Monty Hall problem is a brain teaser, in the form of a probability you're on a game show, and you're given the choice of three doors a car; behind the others, goats. You pick a door, say No. 1, and what's behind the doors, opens another door, say No. 3, which says to you, "Do you want to pick door No. 2?" Is it to your adva choice?	 Hall Proble puzzle. Assis Behind one the host, wh has a goat. intage to sw 	em. ume e do lo kn He itch	The that or is lows then your	C	01
4.	Write a Python program to create a fuzzy control system which me choose to tip at a restaurant. When tipping, you consider the serv rated between 0 and 10. You use this to leave a tip of between 0 ar	odels how y vice and food nd 25%.	ou m d qua	night ality,		
5.	Formulate a decision tree, which is applicable in the field of medi help predict whether or not a patient has diabetes.	cal sciences	that	t will		
6.	Implement Adaptive Boosting in Python for a simple fruit cla Consider classification of the fruits into oranges or apples. The ch provided for the fruits to be classified are weight and size (diame fruit as either apple or orange just based on the data on the size an	assification laracteristics eter). Classif ld weights.	prob that fy a	lem. t are new	C	02
7.	For a coin toss example with incomplete information, we have n problem of estimating θ , where θ is the probability of heads or tai Apply Expectation Maximization (EM) Algorithm to start with a calculate z, then update θ using this new value for z, and repeat label of the coin is indicated by z.	nissing data Is is harder a guess for till converge	and to so θ, nce.	l the olve. then The		
8.	Perform text classification for a real-world example. Consider predicting whether a given movie review is positive or neg- sentiments which are classified into different categories and b classification give either a positive review or a negative review.	a model ca ative. Use based upon	pabl peop the	e of ple's text		
9.	Given a robot which can only move in four directions, UP (U), DOW RIGHT®. Given a string consisting of instructions to move. Output robot after executing the instructions. Initial position of robot is at or	/N (D), LEFT the coordination (0, 0).	· (L), ates	and of a	C	03
10	D. A robot moves in a plane starting from the original point (0, 0). toward UP, DOWN, LEFT and RIGHT with a given steps. Write a the distance from current position after a sequence of movement the distance is a float, then just print the nearest integer.	The robot ca program to and original	an m com I poii	nove pute nt. If		

TOTAL : 60 PERIODS

REFERENCE BOOKS

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third Edition, 2009.
- 2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill- 2008.

WEB REFERENCES

- 1. https://www.tutorialspoint.com/artificial_intelligence_with_python/index.htm
- 2. https://machinelearningmastery.com/uncertainty-in-machine-learning/
- 3. https://learn-robotics.com/

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Approach a real-world problem, which is uncertain and provide appropriate reasoning.
- CO2 Develop solutions using supervised learning techniques and know how to deal with problems with hidden variables.
- CO3 Use natural language processing and program basics of robotics.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO2	3	3	3	3	2	2	1	1	2	2	2	3	3	3	3
CO3	3	3	3	3	3	2	1	1	2	2	2	3	3	3	3

		3	1	0	3
OBJE	TIVES				
*	To become skilled at JavaScript and JQuery.				
*	To learn the concepts of Angular JS.				
*	To understand the basic framework of Node JS.				
*	To learn the various Features of PowerShell.				
*	To become familiar with the concepts of LINQ				
	JAVASCRIPT AND JQUERY				ę
Introdu	ction to JavaScript - Syntax - Variables and data types -JavaScript Control State	eme	nts -		
Functi	ons -Objects - Fundamentals of JQuery –JQuery selectors - Traversing - Manipu	ulato	ors –	С	01
Events					
	ANGULAR JS				Ş
Introdu	ction to Angular JS –Directives –Expression –controllers –scope-events –se	rvice	es –	^	- -
Filters	- Modules - Forms -Validation -Exception Handling				
UNIT I	I NODE JS				ę
Introdu	ction to Node JS - NPM - Callbacks -Events- Express Framework -D	atab	base	~	0
Conne	ctivity				03
	V POWER SHELL				ę
Introdu	ction to Power shell -Variables -Operators -Arrays - Conditional Statements -	Loo	ping	C	· ∩ ⁄
Staten	ents Regular Expressions – File Operations				04
י דואט	/ LINQ			1	Ş
Introdu	ction to LINQ –Query Operators –SQL –XML – Objects –XML –Entities			С	05
	TOTAL	: 4	5 PE	rio	DS
TEXT	BOOKS				
1.	"HTML 5 Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP & jQuery Black B	Book	", Ko	ger	nt
	Learning Solutions Inc., 2011				
2.	Pedro Teixeira, "Professional Node.js", John Wiley & sons, Inc., 2013				
REFE					
1.	Valeri Karpov & Diego Netto, "Professional Angular JS", publication: John Wiley	& s	ons, l	nc.	,
	2015				
2.	Bruce Payette, "Windows Powershell in Action", Manning Publication, 2011.				
3.	Fabrice Marguerie, Steve Eichert, Jim Wooley, "LINQ in Action", Manning Public	atio	n, 20	80	
COUR	SE OUTCOMES				
Upon	completion of the course, students will be able to				
CO1	Apply JavaScript and JQuery to solve problems				
CO2	Explore the Angular JS concepts				
CO3	Understand and analyze the Node JS framework				
CO4	Understand and analyze the Node JS framework				
CO5	Understand LINQ Scripting language				

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1	1	-	-	1	-	-	1	2	3	2	2
CO2	2	2	3	1	1	-	-	1	-	-	1	2	3	2	2
CO3	2	2	3	1	1	-	-	1	-	-	1	2	2	2	2
CO4	2	2	3	1	1	-	-	1	-	-	1	2	3	2	2
CO5	2	2	3	1	1	-	-	1	-	-	1	2	2	2	2

DS1602	COMPUTATIONAL LINGUISTICS	L	Т	Ρ
		3	1	0
OBJECTIVE	S			
 Learn 	about expressing words			
 Learn 	how to translate text to speech			
 Learn 	the process of analysing a string of symbols			
 Analy 	se the meaning of the word with and without considering the context			
 Learn 	how to automatically extracting structured information			
UNIT I	WORDS			
Regular Exp	ressions and Automata, Words and Transducers, N-grams, Part-of	-Spe	ech	~
Tagging, Hid	den Markov and Maximum Entropy Models			CC
UNIT II	SPEECH			
Phonetics, S	peech Synthesis, Automatic Speech Recognition, Speech Recognition, A	dvar	nced	00
Topics, Com	outational Phonology			
UNIT III	SYNTAX			
Formal Gram	mars of English, Syntactic Parsing, Statistical Parsing, Features and Unific	catio	n	
Language an	d Complexity			CC
UNIT IV	SEMANTICS AND PRAGMATICS			
The Represe	ntation of Meaning, Computational Semantics, Lexical Semantics, Comp	utati	onal	
Lexical Sema	Intics, Computational Discourse			CC
UNIT V	APPLICATIONS			
Information	Extraction, Question Answering and Summarization, Dialog and Conve	rsati	onal	
Agents, Mach	nine Translation			CC
	TOTAL	. : 4	5 PEF	RIOE
ТЕХТ ВООК	S			
1. Danie	I Jurafsky and James H. Martin, Speech and Language Processing, Seco	nd E	dition	
REFERENCE	BOOKS			
1 Ralph	Grishman Computational Linguistics: An Introduction Studios in Na	tura	llan	aua
Proce	ssing	tara		gua
2. Rolan	d Hausser, Foundations of Computational Linguistics, Springer, Third Edit	ion		
	etion of the course, students will be able to			
CO1 Annly	regular expression to describe the word			
CO2 Trans	late text to speech			
CO3 Analy	ze the string of symbols			
CO4 Analy	ze the meaning of the word with and without the context			
CO5 Extra	t structured information automatically			

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3		
CO1	3	2	2	1	1	-	-	1	-	-	1	1	3		
CO2	3	2	2	1	1	-	-	1	-	-	1	1	3		
CO3	3	2	2	1	1	-	-	1	-	-	1	1	3		
CO4	3	2	2	1	1	-	-	1	-	-	1	1	3		
CO5	3	2	2	1	1	-	-	1	-	-	1	1	3		

	D3 DATA VISUALIZATION	L	Τ	PC											
	Common to EEE (Elective)	3	1	0 3											
OBJE	CTIVES														
*	To understand how accurately represent voluminous complex	k data set in web an	d from	other											
	data sources														
*	To understand the methodologies used to visualize large data	sets													
*	To understand the process involved in data visualization and	security aspects invo	olved ii	n data											
	visualization														
UNIT	INTRODUCTION			9											
Conte	xt of data visualization – Definition, Methodology, Visualizatio	n design objectives.	. Key												
Facto	s - Purpose, visualization function and tone, visualization	design options -	Data	001											
repres	entation, Data Presentation, Seven stages of data visu	alization, widgets,	data	COT											
visual	zation tools.														
UNIT	I VISUALIZING DATA METHODS			9											
Mappi	ng - Time series - Connections and correlations - Scatterplot r	naps - Trees, Hierar	chies	<u></u>											
and R	ecursion - Networks and Graphs, Info graphics														
UNIT	II VISUALIZING DATA PROCESS			9											
Acqui	ing data, - Where to Find Data, Tools for Acquiring Data from t	ne Internet, Locating	Files												
for Us	e with Processing, Loading Text Data, Dealing with Files and	Folders, Listing Files	s in a												
Folde	, Asynchronous Image Downloads, Advanced Web Technic	jues, using a Datal	base,												
Dealir	g with a Large Number of Files. Parsing data - Levels of E	ffort, Tools for Gath	nering	CO3											
Clues	Text Is Best, Text Markup Languages, Regular Expressions	(regexps), Grammars	s and												
BNF	Notation, Compressed Data, Vectors and Geometry, Binary	Data Formats, Adva	anced												
Detec	tive Work.														
UNIT	V INTERACTIVE DATA VISUALIZATION			9											
Drawi	ng with data – Scales – Axes – Updates, Transition and Motion	 Interactivity - Layo 	outs –	CO4											
Geom	apping – Exporting, Framework – T3, .js, tablo.														
UNIT	V SECURITY DATA VISUALIZATION			9											
Port s	can visualization - Vulnerability assessment and exploitation -	Firewall log visualiza	tion -												
Intrus	on detection log visualization -Attacking and defending visuali	zation systems - Cre	eating	CO5											
securi	ty visualization system.														
		TOTAL : 4	15 PER	lods											
TEXT	BOOKS														
1.	Scott Murray, "Interactive data visualization for the web", O"Re	illy Media, Inc., 2013	8.												
REFE	RENCE BOOKS														
1.	Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.														
2.	Greg Conti, "Security Data Visualization: Graphical Techni	ques for Network A	nalysis	s", No											
	Starch Press Inc, 2007.														
3.	Alberto Cairo, "The Functional Art: An introduction to informa	ation graphics and v	isualiza	ation",											
	New Riders, 2012.														
COUF	SE OUTCOMES														
	completion of the course, students will be able to														
Upon	Design and create data visualizations														
Upon CO1															
Upon CO1 CO2	Design and use various methodologies present in data visualiz	ation													
Upon CO1 CO2 CO3	Design and use various methodologies present in data visualization in var Identify opportunities for application of data visualization in var	ation ious domains.													
Upon CO1 CO2 CO3 CO4	Design and use various methodologies present in data visualization in var Identify opportunities for application of data visualization in var Design and process the data for Virtualization.	ation ious domains.													
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
-----	-----	-----	-----	-------------------------------------	-----	-----	-----	-----	-----	------	------	------	------	------	------
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	2	2	2	2	2	1	3	3	2
CO2	3	3	3	3	2	2	2	2	2	2	2	1	3	3	2
CO3	3	3	3	3	2	2	2	2	2	2	2	1	3	3	2
CO4	3	3	3	3	2	2	2	2	2	2	2	1	3	3	2
CO5	3	3	3	3	2	2	2	2	2	2	2	1	3	3	2

DS1604 DATA ANALYTICS L T	Ρ	С
3 1	0	3
OBJECTIVES		
 To learn the fundamentals of data science and big data. 		
 To gain in-depth knowledge on descriptive data analytical techniques. 		
\diamond To gain knowledge to implement simple to complex analytical. Algorithms in bi	g d	lata
frameworks.		
To develop programming skills using required libraries and packages to perform data a	naly	ysis
in Python.		
 To understand and perform data visualization, web scraping, machine learning and nature 	al	
language processing using various Data Science tools.		
UNIT I INTRODUCTION TO BIGDATA		ç
Introduction to Big Data – Characteristics of Data – Evolution of Big Data – Big Data Analytics		
- Classification of Analytics - Top Challenges Facing Big Data - Importance of Big Data		
Analytics – Data Analytics Tools. Data Collections: Types of Data Sources - Sampling - Types		
of Data Elements - Visual Data Exploration and Exploratory - Statistical Analysis - Missing	C	01
Values - Outlier Detection and Treatment - Standardizing Data - Categorization - Weights of		
Evidence Coding - Variable Selection – Segmentation.		
UNIT II DESCRIPTIVE DATA ANALYTICS	•	ç
Types of Data Analysis – Descriptive, Diagnostic, Predictive and Prescriptive. Mean, Median		
and Mode – Standard Deviation and Variance – Probability – Probability Density Function –		
Types of Data Distribution – Percentiles and Moments – Correlation and Covariance –		
Conditional Probability – Bayes' Theorem – Introduction to Univariate, Bivariate and	C	:02
Multivariate Analysis – Dimensionality Reduction using Principal Component Analysis and LDA		
- Dimensionality Reduction using Principal Component Analysis and Linear Discriminant		
Analysis (LDA) – Principal Component Analysis (PCA).		
UNIT III PREDICTIVE DATA ANALYTICS	•	Ģ
_inear Regression – Polynomial Regression – Multivariate Regression – Multi Level Models–		
Data Warehousing Overview – Bias/Variance Trade Off – K Fold Cross Validation – Data		
Cleaning and Normalization – Cleaning Web Log Data – Normalizing Numerical Data –		~
Detecting Outliers – Introduction to Supervised and Unsupervised Learning – Reinforcement		0.
Learning – Dealing with Real World Data – Machine Learning Algorithms –Clustering –Python		
Based Application.		
UNIT IV DATA ANALYTICS FRAMEWORKS		ę
Introducing Hadoop –Hadoop Overview – RDBMS versus Hadoop – HDFS (Hadoop		
Distributed File System): Components and Block Replication – Processing Data with Hadoop –		
Introduction to MapReduce – NoSQL – MongoDB: RDBMS Vs MongoDB – Mongo DB	C	04
Database Model – Data Types and Sharding – Introduction to Hive – Hive Architecture – Hive		
Query Language (HQL). PIG – Introduction to PIG.		
UNIT V DATA STREAMS AND VISUALIZATION		ę
Mining Data Streams – Stream Data Model – Sampling Data in stream- Filtering Stream –		
Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a		·~r
		03
Window – Decaying Window. Visual data analysis techniques-Interaction Techniques-Systems		
Window – Decaying Window. Visual data analysis techniques-Interaction Techniques-Systems and applications -Analyzing big data with twitter- Big data for E-Commerce-Big data for blogs.		

TEXT BOOKS

- 1. Frank Pane, "Hands On Data Science and Python Machine Learning", Packt Publishers, 2017.
- 2. Baesens, Bart, "Analytics in a big data world : the essential guide to data science and its applications".
- 3. Seema Acharya, Subhashini Chellapan, "Big Data and Analytics", Wiley, 2015.
- 4. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets ", 2012.

REFERENCE BOOKS

- 1. Alberto Boschetti, Luca Massaron, "Python Data Science Essentials", Packt Publications, 2nd Edition, 2016.
- 2. DT Editorial Services, Big Data, Black Book, Dream Tech Press, 2015. 3. Yuxi (Hayden) Liu, "Python Machine Learning", Packt Publication, 2017.
- 3. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunity in Huge Data Streams with advanced analytics, John Wiley & Sons, 2012.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Identify the real-world business problems and model with analytical solutions.

CO2 Solve analytical problem with relevant mathematics background knowledge.

CO3 Convert any real-world decision-making problem to hypothesis and apply suitable Statistical testing.

CO4 Write and demonstrate simple applications involving analytics using Hadoop and MapReduce.CO5 Use open-source frameworks for modeling and storing data and visualize using Python.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3

DS160	DATA VISUALIZATION LABORATORY		Т	Ρ	С			
		0	0	4	2			
OBJE(* * * *	TIVES Understand how to apply ggplot for visualizing the data Understand how to visualize single variable Understand visualizing two or more variables Learn about customizing the plots with color and labels							
1.	The built-in R data set quakes gives the locations of earthquakes off of F 1960's. Create a plot of the locations of these earthquakes, showing depth v and magnitude with size	⁻ iji in vith c	the color					
2.	Create a boxplot of highway mileage for each different cylinder in mtcars, ar on one plot with highway mileage on the y-axis and cylinder on the x-axis	d dis	splay					
3.	Create a barplot of the word lengths of the words in the data set, faceted using austen data set from the fosdata package	by n	ovel	C	01			
4.	The pres_election data set gives voting results from the 2010-2016 U.S. pro elections. Produce five bar charts, one for each election, that show the tota of votes received by each political party. Use facet_wrap to put all five chart same visualization.	∍side I nur s into	ential nber o the					
5.	The pres_election data set gives voting results from the 2010-2016 U.S. pro elections. Produce five bar charts, one for each election, that show the tota of votes received by each political party. Use facet_wrap to put all five chart same visualization.	∍side I nur s into	ential nber o the	·				
6.	Create a scatterplot of highway mileage versus city mileage colored by the r cylinders, using the mtcars data set. Experiment using categorical and s coloring.	umb eque	er of ential					
7.	In Emma, restrict to words that have non-zero sentiment score. Create a s of the percentage of words that have a positive sentiment score versus cha a line using geom_line or geom_smooth and explain your choice using au set from the fosdata package	catte pter. sten	rplot Add data		02			
8.	Make a scatterplot showing CO2 uptake as a function of concentration levelouilt-in data set CO2. Include a smoothed fit line and color by Type. Facet to one plot for each Plant	əl foı your	r the plot		02			
9.	Consider the ecars data set create a visualization showing scatterpl the chargeTimeHrs variable on the x axis and the kwhTotal variable on th Facet your visualization with one plot per day of week and platform. the web platform cars, so you have 14 facets in two rows and seven colu sure your weekdays display in a reasonable order	ots e y Ren ımns	with axis. nove . Be					
10.	Consider the scotland_births data set in the fosdata package. This data set the number of births in Scotland by age of the mother for each year from 194 a. Create a line plot of births by year from 1945-2019 for each age group rep in the data	cont 5-20 prese	tains)19. nted	с	03			

11. Consider the frogs data set in the fosdata package. This data was used to argue that
a new species of frog had been found in a densely populated area of Bangladesh.
Create a scatterplot of head length distance from tip of snout to back of mandible
versus forearm length distance from corner of elbow to proximal end of outer palmar
metacarpal tubercle, colored by species.

- 12. Use the babynames data set from the babynames package
 - a. Make a line graph of the total number of babies of each sex versus year
 - b. Make a line graph of the number of different names used for each sex versus year
 - c. Make a line graph of the total number of babies with your name versus year. If your name doesn't appear in the data, use the name "Alexa"
 - d. Make a line graph comparing the number of boys named Bryan and the number of boys named Brian from 1920 to the present
- 13. Use the Batting data set from the Lahman package, gives the batting statistics of every player who has played baseball from 1871 through the present day
 - a. Create a scatterplot of the number of doubles hit in each year of baseball history.
 - b. Create a scatterplot of the number of doubles hit in each year, in each league. Show only the leagues 'NL' and 'AL', and color the NL blue and the AL red
 - c. Create boxplots for total runs scored per year in the AL and the NL from 1969 to the present
 - d. Create a histogram of lifetime batting averages (H/AB) for all players who have at least 1000 career AB's.

FOR DATASET : Find Open Datasets and Machine Learning Projects | Kaggle

TOTAL : 60 PERIODS

WEB REFERENCES

- 1. Chapter 7 Data Visualization with ggplot | Foundations of Statistics with R (slu.edu)
- 2. https://bookdown.org

COURSE OUTCOMES

Upon completion of the course, students will be able to

 CO1
 Develop plots such as histogram, bar plots, density plots, box plots and QQ plots by using single variable

 CO2
 Apply multivariable to develop plot such as scatter plot, line graphs, and faceting to visualize the data

CO3 Customize the plots with colors, labels and themes, text annotations, and highlighting

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	1	1	2	2	1	1	2	3	3	2
CO2	3	3	3	3	2	1	1	2	2	1	1	2	3	3	2
CO3	3	3	3	3	2	1	1	2	2	1	1	2	3	3	2

DS1701	NEURO-FUZZY COMPUTING	<u>T P</u>	<u>, c</u>
	3	1 0	3
OBJECTIVES			
 Get familiarized with differer 	nt architectures and training algorithms of neural networks	s.	
Get exposed to the various	s neural modelling and control techniques with case s	tudy i	using
simulation tool box.			
 Gain Knowledge on fuzzy set 	at theory and fuzzy rules.		
 Able to design and implement 	ent the fuzzy logic controller with case study using simi	ulatior	ו tool
box.			
 Capable of designing hybrid 	control schemes, selected optimization algorithms with	case s	study
using simulation tool box			
UNIT I ARTIFICIAL NEUR	AL NETWORK		9
Review of fundamentals – Biologic	al neuron, artificial neuron, activation function, single la	ayer	
perception - Limitation - Multila	yer perception – Back Propagation Algorithm (BPA) —	
Recurrent Neural Network (RNN) –	Adaptive Resonance Theory (ART) based network – Ra	dial	CO1
basis function network - online le	arning algorithms, BP through time – RTRL algorithm	s –	
Reinforcement learning			
UNIT II NEURAL NETWOR	KS FOR MODELING AND CONTROL		9
Modelling of non-linear systems	using ANN – Generation of training data – Opti	mal	
architecture-Model validation - Co	ntrol of non-linear systems using ANN – Direct and indi	rect	CO2
Neuro control schemes – Adaptiv	e Neuro controller – Familiarization with neural netw	/ork	002
toolbox			
UNIT III FUZZY SET THEO	RY		9
Fuzzy set theory – Fuzzy sets – Op	peration on fuzzy sets – Scalar cardinality, fuzzy cardina	lity,	
union and intersection, compleme	ent (Yager and Sugeno), equilibrium points, aggregat	ion,	CO3
projection, composition, cylindrical	extension, fuzzy relation – Fuzzy membership functions		
UNIT IV FUZZY LOGIC FO	R MODELING AND CONTROL		9
Modelling of non-linear systems us	sing fuzzy models – TSK model – Fuzzy logic controlle	ər —	_
Fuzzification – Knowledge base –	Decision making logic – Defuzzification – Adaptive fu	izzy	CO4
systems – Familiarization with fuzzy	/ logic toolbox		
UNIT V HYBRID CONTRO	L SCHEMES		9
Fuzzification and rule base using	ANN – Neuro fuzzy systems – ANFIS – Fuzzy neur	on–	
Introduction to GA – Optimization	n of membership function and rule base using Gen	etic	CO5
Algorithm – Introduction to support	vector machine – Particle swarm optimization – Case st	udy	
 Familiarization with ANFIS toolbo 	X		
	TOTAL : 45	PERI	IODS
TEXT BOOKS			
1. Laurence Fausett, "Fundam	entals of Neural Networks", Prentice Hall, Englewood	Cliffs,	N.J.,
1992		_	
2. Timothy J. Ross, "Fuzzy Log	gic with Engineering Applications", McGraw Hill Inc., 2000).	
REFERENCE BOOKS			
1. Goldberg, "Genetic Algorith	m in Search, Optimization and Machine learning", Addis	on W	esley
Publishing Company Inc. 19)89		
2. Millon W.T., Sutton R.S. and	d Webrose P.J., "Neural Networks for Control", MIT press	s, 1992	2.
3. EthemAlpaydin, "Introducti	on to Machine learning (Adaptive Computation and	d Mao	chine
Learning series)', MIT Press	s, Second Edition, 2010.		
4. Zhang Huaguang and Li	Derong "Fuzzy Modeling and Fuzzy Control Serie	es: Co	ontrol
	berong, ruzzy modeling and ruzzy control cont		

Upon completion of the course, students will be able to

CO1	Understand basics of deep learning

CO2 Implement various deep learning models

CO3 Realign high dimensional data using reduction techniques

CO4 Analyze optimization and generalization in deep learning

CO5 Explore the deep learning applications

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3

DS1702	TEXT ANALYTICS	L	Т	Ρ	С
		3	1	0	3
OBJECTIVES					
 To get 	introduced to language processing technologies for processing the text da	ata.			
 To get 	introduced to Text analytics concepts and framework.				
🔹 To acq	uire knowledge on text data analytics and its classification using language	e mo	dels		
 To und 	erstand the need of Text similarity analysing and Clustering algorithms.				
 To lear 	n the theoretical techniques, tools and applications of text analytics.				
UNIT I	INTRODUCTION TO NATURAL LANGUAGE PROCESSING				9
Natural Langu	age Processing - Linguistic Background - Language syntax and stru	uctu	re -		
Grammar - L	anguage Semantics - Mathematical Foundations - Morphological An	alys	is -		~
Boundary Det	ermination- Reading unstructured data - Representing text data - Text	Anal	ysis	C	,01
Framework.					
UNIT II	PROCESSING AND UNDERSTANDING TEXT				9
Text Tokeniza	ation - Sentence Tokenization - Word Tokenization - Text Normali	zatic	n -		
Cleaning Text	-Tokenizing Text - Removing Special Characters - Expanding Contra	actio	ns -		
Case Convers	ions - Removing Stop words - Correcting Words - Stemming - Lemmat	izati	on -	_	·~~
Understanding	Text Syntax and Structure - Installing Necessary Dependencies - In	npor	tant		,UZ
Machine - Pa	rt of speech (POS) tagging - Shallow parsing - Dependency-based p	arsir	ng -		
Constituency-	pased parsing.				
UNIT III	TEXT CLASSIFICATION				9
Automated tex	t classification - Text Normalization - Bag of words Model - TF-IDF	Mod	lel -		
Classification	Algorithms - Multinomial Naive Bayes - Support Vector Machines - Ev	alua	ting	С	;03
Classification I	Models - Building a Multi-Class Classification System - Application and us	ses.			
UNIT IV	TEXT SIMILARITY AND CLUSTERING				9
Important con-	cepts - Analysing Term Similarity - Analysing Document Similarity - Do	ocun	nent		
Clustering - K	Means - Affinity Propagation - Ward's Agglomerative Hierarchical Clus	steriı	ng -	C	04
Semantic Ana	alysis - Exploring WordNet - Word Sense Disambiguation - Name	d Ei	ntity		-04
Recognition - A	Analysing Semantic Representation - Proposition Logic - First Order Logic	2			
UNIT V	TEXT ANALYTICS APPLICATION			1	9
Tools – Natu	ral Language Tool kit, Apache OpenNLP. Applications of Text Ana	alytic	s –		
Applications i	n Social media - Life science - Legal Text-Visualization -Case	stud	lies-		
Sentimental A	nalysis - Sentiment Analysis of IMDB Movie Reviews - Setting up Depen	den	cies	С	;05
- Preparing D	atasets - Supervised Machine Learning Technique - Unsupervised Le	exico	on -		
based Technic	ues - Comparing Model Performances.				
	TOTAL	: 45	PE	rio	DS
TEXT BOOKS	·				
1. Christo Proces	pher D. Manning and Hinrich Schutze, "Foundations of Statistical Natisting", MIT Press, 1999.	tural	Lar	igua	age
2. Dipania	an Sarkar "Text Analytics with Python-A Practical Real-World Approx	ach	to G	Gair	ning
Actiona	able Insights from Your Data". Apress .2016	-			9

REFE	REN		BOOł	(S												
1.	Ste	even	Struh	l, "Pr	actica	I Text	Ana	lytics:	Inter	pretin	g Text	and L	Instruc	tured Da	ata for B	usiness
	Inte	ellige	ence",	Koga	ın Pag	ge, 20	15.									
2.	Ma	tthev	v A. F	Russe	ll, "Mi	ning t	he Sc	ocial V	Veb",	O'Rei	illy Me	dia, 20	13. 4.	Steven E	Bird, Ewa	n Klein
	and	d Ed	ward	Lope	r, "Na	tural	Lang	uage	Proce	essing	with F	Python	", 1 st	Edition,	O'Reilly	Media,
	2009. James Allen "Natural Language Understanding" Second Edition 2003 Dearson Education															
3.	. James Allen, "Natural Language Understanding", Second Edition, 2003, Pearson Education.															
4.	. Daniel Jurafsky & James H.Martin, " Speech and Language Processing", Pearson Education															
_	(Singapore) Pte. Ltd., 2002.															
5.	5. Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda ," Applied Text Analysis with Python" ,1 st															
	Edition, O'Reilly Media,2018															
COURSE OUTCOMES																
Upon	on completion of the course, students will be able to															
<u>CO1</u>	Gain basic knowledge over language processing technologies for processing the text data.															
CO2	Extract the key information from Text data and process it at semantic level.															
CO3	Analyze the text content to provide predictions related to a specific domain using language															
004	models.															
CO4	Inte	erpre	t the I	result	s, gai	n insig	ghts, a	and re	ecomr	nend	possib	le actio	ons fro	m analyt	ics perto	rmed
COF	On Do	form		richte) tools	•									
005	Pe	nom	i a va	nety t		lask	S.									
					M	APPI	NG O	F CO	s WI	TH PC	os ani	D PSO	S			
					PR	OGR/		итсс	MES	(POs	;)			PROG	RAM SP	ECIFIC
COs	•					 			1	.	, 	[[OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO2		3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO3		3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO4		3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO5		3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
					1	1		1		1						

DS1703	COMPUTER VISION	L	Т	Ρ	С
		3	1	0	3
OBJECTIVES					
 To review 	ew image processing techniques for computer vision.				
 To under 	erstand shape and region analysis.				
 To under 	erstand Hough, Transform and its applications to detect lines, circles, ellip	pses	; .		
 To under 	erstand three-dimensional image analysis techniques and motion analysis	s.			
 To stud 	y some applications of computer vision algorithms.				
UNIT I	IMAGE PROCESSING FOUNDATIONS				9
Review of im	age processing techniques – classical filtering operations – three	shol	ding	1	
techniques - e	dge detection techniques - corner and interest point detection - mathe	ema	tical	C	01
morphology – t	exture.			1	
UNIT II	SHAPES AND REGIONS				9
Binary shape	analysis - connectedness - object labeling and counting - size fil	terin	ig –	Ł	
distance function	ons – skeletons and thinning – deformable shape analysis – boundary	trac	king	1	
procedures – a	active contours – shape models and shape recognition – centroidal p	rofile	es –	C	02
handling occlu	sion – boundary length measures – boundary descriptors – chain o	code	es –	1	
Fourier descrip	tors – region descriptors – moments.			1	
UNIT III	HOUGH TRANSFORM				9
Line detection	- Hough Transform (HT) for line detection - foot-of-normal method	– b	line	t	
localization -	line fitting – RANSAC for straight line detection – HT based circula	r ot	oject	1	
detection - acc	curate center location – speed problem – ellipse detection – Case study:	Hu	man	C	03
Iris location - h	nole detection – generalized Hough Transform (GHT) – spatial matched	filte	ring	1	
– GHT for ellips	se detection – object location – GHT for feature collation.		_	l	
UNIT IV	3D VISION AND MOTION				9
Methods for 3	D vision – projection schemes – shape from shading – photometric s	stere	90 –	1	
shape from tex	ture – shape from focus – active range finding – surface representations	– po	oint-	1	
based represei	ntation – volumetric representations – 3D object recognition – 3D recons	struc	ction	C	04
- introduction	to motion - triangulation - bundle adjustment - translational align	ımer	nt –	1	
parametric mot	ion – spline-based motion – optical flow – layered motion.			L	
UNIT V	APPLICATIONS				9
Application: Pl	noto album – Face detection – Face recognition – Eigen faces -	- Ac	tive		
appearance an	d 3D shape models of faces Application: Surveillance – foreground-bac	kgrc	ound	1	
separation - p	article filters - Chamfer matching, tracking, and occlusion - combinin	g vi	ews	C	05
from multiple of	cameras - human gait analysis Application- In-vehicle vision system-	loca	ating	1	
roadway – road	1 markings – identifying road signs – locating pedestrians.			ı	
	ΤΟΤΑΙ	.: 45	5 PER	loi	DS
TEXT BOOKS					
1. Baggio	D L et al., Mastering OpenCV with Practical Computer Vision F	²roj€	ets,	Pa	ckt
Publish	ing, 2012.				

REFERENCE BOOKS

- 1. E. R. Davies, —Computer & Machine VisionII, Fourth Edition, Academic Press, 2012.
- 2. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithms for analyzing imagesll, O'Reilly Media, 2012.
- 3. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer VisionII, Third Edition, Academic Press, 2012.
- 4. R. Szeliski, —Computer Vision: Algorithms and ApplicationsII, Springer 2011.
- 5. Simon J. D. Prince, —Computer Vision: Models, Learning, and Inferencell, Cambridge University Press, 2012.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 | Implement fundamental image processing techniques required for computer vision.

- CO2 | Implement boundary tracking techniques and perform shape analysis
- CO3 Apply Hough Transform for line, circle, and ellipse detections.
- CO4 Apply 3D vision techniques and implement motion related techniques.
- CO5 Develop applications using computer vision techniques.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	1	2	2	2	3	2	3
CO3	3	3	3	3	2	-	-	-	1	2	2	2	3	2	3
CO4	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2
CO5	3	3	3	3	2	-	-	-	1	2	2	2	3	3	3

DS170	4	BIG DATA MANAGEMENT	L	Т	Ρ	С
			3	1	0	3
OBJE	CTIVES					
*	To Und	erstand the differences and benefits of in-memory data management.				
*	To Und	erstand the execution flow of a distributed query.				
*	To Iden	tify the difficulties of scalability and parallelization.				
*	To Desi	gn a distributed database using NoSQL tools.				
*	To Proc	luce a functional program to process Big Data in a Cloud environment.				
*	To Man	age and process a Data Stream.				
*	To Des	gn the architecture of a Big Data management system.				<u> </u>
UNIT I						9
Introdu	iction to	Big Data, Cloud Computing, Scalability - Big Data Design - Polyglot syst	ems	;	С	:01
Schem	ia less d	atabases; Key-value stores; Wide-column stores; Document-stores				<u> </u>
UNIT I					_	9
Distribu	uted Da	ta Management: Transparency layers; Distributed file systems; File	forn	nats;		
Fragme	entation	Replication and synchronization; Sharding; Consistent hash; LSM-11	rees	5. In-	C	;02
memor	y Data	Management: NUMA architectures; Columnar storage; Late recons	struc	tion;		
	veignt co					•
Dictribu	utod Do	ta Processing: Distributed Query Processing: Sequential access: Di	noliu	aina	T	9
Distribu	uleu Da	vectorization barriers: Multitenancy: Man Reduce: Resilient Di	peili etrib	utod		
Datase	ate: Spar	k Stream management and processing: One-pass algorithms: Sliding	win	dow	_ C	;03
Stream	to relat	ion operations: Micro-batching: Sampling: Filtering: Sketching	VVIII	uow,		
	V	DATA ANALYTICS FRAMEWORKS				9
Big Da	• ta Archit	ectures: Centralized and Distributed functional architectures of relational	svst	ems [.]		
Data W	/arehous	ing architectures: Service Oriented Architecture: Lambda architecture	5,51	onno,	C	;04
	/	NOSQL DATA MANAGEMENT FOR BIG DATA				9
Introdu	iction to	Big Data Storage Platforms for Large Scale Data Storage, CAP T	heo	rem.		
Eventu	al Consi	stency, Consistency Trade-O-s, ACID and BASE, Introduction to Zookee	eper	and		
Paxos,	Introdu	uction to Cassandra, Cassandra Internals, Introduction to HBase,	He	Base		
Interna	ls. No	SQL Databases: Schema-less Models: Increasing Flexibility for	or	Data		;05
Manipu	ulation-K	ey Value Stores- Document Stores - Tabular Stores - Object Data	Stor	·es -		
Graph	Databas	ses-Hive – Sharding. Bigtable: a distributed storage system for structured	d da	ta.		
		TOTAL	.:4	5 PE	RIC	DS
TEXT I	BOOKS					
1.	Mining	of massive datasets - Leskovec, J.; Rajaraman, A.; Ullman, J.D, Camb	ridg	e Ur	niver	sity
	Press, 2	2020. ISBN: 9781108476348	-			-
2.	In-mem	ory data management - Plattner, H.; Zeier, A, Springer, 2012. ISBN: 978	364	229	5744	4
3.	Principl	es of distributed database systems - Özsu, M.T.; Valduriez, P, Springe	er, 2	2020	. IS	BN:
	978303	0262525.				
4.	NoSQL	distilled: a brief guide to the emerging world of polygot persistence -	Sac	lalag	je, F	۶.J.;
	Fowler,	M, Addison-Wesley, 2013. ISBN: 9780321826626		-		
REFEF	RENCE	BOOKS				
1.	Zaharia	, M , An architecture for fast and general data processing on large	clus	ters	-, A	СМ
	Books.	2016.			,	
)					

Upon completion of the course, students will be able to

CO1 Ide	entify the real-world business problem	s and model with analytical solutions.
---------	--	--

CO2 Understand the differences and benefits of in-memory data management.

CO3 Understand the execution flow of a distributed query.

CO4 Design the architecture of a Big Data management system.

CO5 Design a distributed database using NoSQL tools

COs				PR	OGR/	AM O	итсс	MES	(POs	;)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3		

		1												1		
DS1707	7			NEU	JRO-F	UZZ	Y CO	MPUT	ING I	LABO	RATO	RY		L.	Г	P C
														0)	4 2
	IIVE3	tand			onto											
**	Unders Learn r	neural	-uzzy netwo	orks w	epis vith ha	ack pr	onada	ation a	and w	ithout i	nrenar	ation				
*	Learn t	he op	erator	s of a	enetic	c algo	rithms	3		linour	propul					
*	Practic	e on c	risp p	artitio	ns.	0										
LIST O	F EXPE	ERIME	INTS													
1.	Implem	entati	on of	Perce	eptron											
2.	Implem	entati	on of	Perce	eptron	Rule										CO1
3.	Implem	entati	on of	Artific	ial Ne	eural N	Vetwo	orks								
4.	Implem	entati	on of	Fuzzy	/ Sets	5										
5.	Implem	entati	on of	Cova	riance	;										- CO2
6.	Data Fi	itting b	y Re	gressi	on											
7.	Implem	entati	on of	Crisp	Mode	el										
8.	Implem	entati	on of	Logic	Gate	S										
9.	Implem	entati	on of	Gene	tic Alg	gorith	ms									CO3
10.	Implem	entati	on of	Class	ificati	on Alg	gorith	n								
													TOTAL	.:60	PE	RIODS
REFER	ENCE	BOO	<													
1.	D.K Pra	athika	r, —S	oft Co	omput	ingll, l	Naros	a Put	olishin	g Hou	se, Ne	w Delh	i, 2008			
WEB R	EFERE	INCE	S													
1.	http://m	nirlab.c	org/jai	ng/bo	ok/											
COURS	SE OUT	ГСОМ	ES													
Upon c	omple	tion o	f the	cours	se, st	udent	ts will	be a	ble to)						
CO1	Unders	tand t	he im	pleme	entatio	on of I	Neura	I Netv	vork a	algorith	ms.					
CO2	Design	soluti	ons fo	or com	nplex	proble	ems u	sing F	uzzy	set.						
CO3	Design	and a	pply (Genet	ic and	d Clas	sifica	tion A	lgoritl	nms						
				Μ	APPI	NG O	F CO	s WIT	TH PC)s and	D PSO	s				
COs		-		PRO	OGRA		итсс	MES	(POs	5)			PROGI OUTC	RAM S	SPE S (P	ECIFIC PSOs)
L	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
		-	2	3	2	-	-	-	-	2	2	2	3	3		3
CO1	3	3	3	Ŭ												
CO1 CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3		3

SEMESTER V PROFESSIONAL ELECTIVE – I

DS1511XML AND WEB SERVICESLTPC3003OBJECTIVES To understand the basics of XML.To learn XML based technologies and SOAPTo evaluate the technologies behind Web ServicesTo learn to work with RESTIU web servicesTo implement and consume RESTIU web servicesVINT IINTRODUCTIONSOAPVerview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - IntermediariesColOverview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - IntermediariesVerview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - IntermediariesVINT IIIWEB SERVICE TECHNOLOGIES9Overview Of SOAP - HTTP - XML-RPC - SOAP: With AttachmentsUNIT VINRTODUCTION TO RESFUL WEBSERVICES9Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - MethodInformation - Scoping Information - The Competing Architectures - Technologies on theProgrammable Web - HTTP: Libraries - Processing the Response: XMLParsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADLUNIT VDEVELOPING AND CONSUMING RESTFUL WEB SERVICES99 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources - HTTPResponse Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - A Service Implementation.CO22. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007.3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2007.3. Lindsay Bassett, Intr		PROFESSIONAL ELECTIVE – I				
3 0 0 3 OBJECTIVES To understand the basics of XML. To learn XML based technologies and SOAP To evaluate the technologies behind Web Services To learn to work with RESTful web services To inplement and consume RESTful web services 9 Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries CO2 UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries CO2 UNIT II WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies - UDDI - WSDL - ebXML - SOAP And Web Services in E-Com -Overview Of .NET And J2EE 9 Wint IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL VINT V UNIT V DEVELOPING AND CONSUMIN	DS1511	XML AND WEB SERVICES	L	т	Ρ	С
OBJECTIVES To understand the basics of XML. To learn XML based technologies and SOAP To evaluate the technologies behind Web Services To iearn to work with RESTIUl web services To implement and consume RESTIUl web services To implement and consume RESTIU web services To implement and consume RESTIU web services Oterview Of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture UNIT II INTRODUCTION 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments UNIT II WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies - UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of NET And J2EE UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web - HTTP: Dibraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Represen			3	0	0	3
 To understand the basics of XML. To learn XML based technologies and SOAP To learn XML based technologies and SOAP To evaluate the technologies behind Web Services To implement and consume RESTful web services UNIT I INTRODUCTION 9 Role of XML - SML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments UNIT II WEB SERVICE TECHNOLOGIES 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of NET And J2EE 9 VINT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web - Leftover Terminology - Web Services are Web Sites - del.ico.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers : Handling Serialized Data - Clients Made Easy with WADL UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface - A Service Implementation. TOTAL : 45 PERLOVS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Rub	OBJECTIVES					
To learn XML based technologies and SOAP To evaluate the technologies behind Web Services To learn to work with RESTful web services <td< td=""><td> To und </td><td>erstand the basics of XML.</td><td></td><td></td><td></td><td></td></td<>	 To und 	erstand the basics of XML.				
 To evaluate the technologies behind Web Services To learn to work with RESTful web services To implement and consume RESTful web services INTRODUCTION INTRODUCTION Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies - UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web - Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Consum Interface - A Service Implementation. TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Basset, Introduction to JavaScript Object Notation, O'Reilly Media, 2007. 3. Lindsay Basset, Introd	 To lear 	n XML based technologies and SOAP				
To learn to work with RESTful web services To implement and consume RESTful web services UNIT I INTRODUCTION 9 Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments UNIT II WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL UNIT V UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface -A Service Implementation. 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to Jav	🔹 To eva	luate the technologies behind Web Services				
To implement and consume RESTful web services UNIT I INTRODUCTION 9 Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture COI UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries -Actors - Design Patterns And Faults - SOAP With Attachments CO2 UNIT II WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resource -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface -A Service Implementation. </td <td>🛠 To lear</td> <td>n to work with RESTful web services</td> <td></td> <td></td> <td></td> <td></td>	🛠 To lear	n to work with RESTful web services				
UNIT I INTRODUCTION 9 Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture 0 UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments 9 UNIT II WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com - Overview Of .NET And J2EE 9 UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web - Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources - HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectures - The Uniform Interface –A Service Implementation. 9 9. Introducing the Simple Storage Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. <td>🛠 To imp</td> <td>lement and consume RESTful web services</td> <td></td> <td></td> <td></td> <td></td>	🛠 To imp	lement and consume RESTful web services				
Role of XML - XML and the Web - XML Language Basics - SOAP - Web Services - Revolutions of XML - Service Oriented Architecture Col UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments Col UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE Col UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XMLL Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 0 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface -A Service Implementation. Co5 1 Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2 Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3	UNIT I	INTRODUCTION				9
of XML - Service Oriented Architecture Imit ii SOAP UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries CO2 UNIT III WEB SERVICE TECHNOLOGIES CO3 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE CO3 UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. CO5 TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2017. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS	Role of XML -	XML and the Web - XML Language Basics - SOAP - Web Services - Rev	/olut	ions		201
UNIT II SOAP 9 Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments Image: Comparison of the Programmable Web - HTTP: Documents in Envelopes - Method Information - The Competing Architectures - Technologies on the Programmable Web - HTTP: Documents in Envelopes - Method Information - The Competing Architectures - Technologies on the Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers: JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources - HTTP Response: Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedress - The Uniform Interface – A Service Implementation. 9 1. FTEXT BOOKS 1 9 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay appan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2 2. Sande Conterje, James Webber, "Developing Enterprise Web Services", Pearson Education,	of XML - Servi	ce Oriented Architecture				01
Overview Of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Intermediaries Col - Actors - Design Patterns And Faults - SOAP With Attachments 9 UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Col Services In E-Com -Overview Of .NET And JZEE 9 UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. Co5 TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagapan, Robert Sk	UNIT II	SOAP				9
- Actors - Design Patterns And Faults - SOAP With Attachments CO2 UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE 9 UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL CO4 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004.	Overview Of S	OAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure - Interm	nedia	aries		
UNIT III WEB SERVICE TECHNOLOGIES 9 Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web Services In E-Com -Overview Of .NET And J2EE Col UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources - HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. 0 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE Sources', Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architec	- Actors - Desi	gn Patterns And Faults - SOAP With Attachments				02
Overview - Architecture - Key Technologies -UDDI - WSDL - ebXML - SOAP And Web CO3 Services In E-Com -Overview Of .NET And J2EE 9 UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the CO4 Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers - JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface -A Service Implementation. CO5 TOTAL : 45 PERIDES TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOCKS 1 Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing	UNIT III	WEB SERVICE TECHNOLOGIES				9
Services In E-Com -Overview Of .NET And J2EE US UNIT IV INRTODUCTION TO RESFUL WEBSERVICES 9 Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the CO4 Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML CO4 Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP 9 Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface – A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing In	Overview - A	rchitecture - Key Technologies -UDDI - WSDL - ebXML - SOAP A	nd ۱	Web		·
UNIT IVINRTODUCTION TO RESFUL WEBSERVICES9Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADLCO4UNIT VDEVELOPING AND CONSUMING RESTFUL WEB SERVICES99 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface -A Service Implementation.CO5TOTAL : 45 PERIODSTEXT BOOKSI. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002.2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007.3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015.REFERENCE BOOKS1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004.2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Services In E-	Com -Overview Of .NET And J2EE				03
Kinds of Things on the Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML CO4 Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL Image: Developing And Consuming RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links CO5 and Connectedness - The Uniform Interface –A Service Implementation. TOTAL : 45 PERIODS C05 TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	UNIT IV	INRTODUCTION TO RESFUL WEBSERVICES				9
Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL CO4 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Kinds of Thin	gs on the Programmable Web - HTTP: Documents in Envelopes -	Me	thod		
Programmable Web -Leftover Terminology - Web Services are Web Sites - del.icio.us: The CO4 Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP CO5 Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedress - The Uniform Interface –A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Veb Services", Pearson Education, 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Information -	Scoping Information - The Competing Architectures - Technologies	on	the		
Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Image: Parsers: Handling Serialized Data - Clients Made Easy with WADL 9 UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Cos Response Codes Resource URIs - Addressability - Statelessness - Representations - Links Cos and Connectedness - The Uniform Interface -A Service Implementation. TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Programmable	Web -Leftover Terminology - Web Services are Web Sites - del.icio	.us:	The	С	04
Parsers -JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL Image: Parsers: Handling Serialized Data - Clients Made Easy with WADL UNIT V DEVELOPING AND CONSUMING RESTFUL WEB SERVICES 9 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedress - The Uniform Interface –A Service Implementation. Co5 TEXT BOOKS TOTAL : 45 PERIODS Image: Parsers Period Parsers Per	Sample Applic	ation - Making the Request: HTTP Libraries - Processing the Respon-	se: 2	XML		
UNIT VDEVELOPING AND CONSUMING RESTFUL WEB SERVICES99 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedress - The Uniform Interface -A Service Implementation.CO5TOTAL : 45 PERIDESTEXT BOOKS1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002.2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007.3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015.REFERENCE BOOKS1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004.2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004.3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005	Parsers -JSON	Parsers: Handling Serialized Data - Clients Made Easy with WADL				
 9 Introducing the Simple Storage Service -Object-Oriented Design of S3 - Resources -HTTP Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005 	UNIT V	DEVELOPING AND CONSUMING RESTFUL WEB SERVICES				9
Response Codes Resource URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface –A Service Implementation. CO5 TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS I. 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	9 Introducing	the Simple Storage Service -Object-Oriented Design of S3 - Resource	s -H	TTP		
and Connectedness - The Uniform Interface –A Service Implementation. TOTAL : 45 PERIODS TOTAL : 45 PERIODS TEXT BOOKS 1. Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. 2. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Response Co	des Resource URIs - Addressability - Statelessness - Representations	s - L	.inks	С	05
 TOTAL : 45 PERIODS TEXT BOOKS Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005 	and Connecte	dness - The Uniform Interface – A Service Implementation.				
 TEXT BOOKS Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005 		TOTAL	. : 4	5 PE	RIO	DS
 Frank. P. Coyle, XML, Web Services And The Data Revolution, Pearson Education, 2002. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005 	TEXT BOOKS					
 Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005 	1. Frank.	P. Coyle, XML, Web Services And The Data Revolution, Pearson Education	tion,	2002	2.	
 Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015. REFERENCE BOOKS Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005 	2. Leonar	d Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 20	07.			
 REFERENCE BOOKS 1. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005 	3. Lindsa	/ Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 201	5.			
 Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005 	REFERENCE	BOOKS				
 Services", Wiley Publishing Inc., 2004. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005 	1. Rames	h Nagappan Robert Skoczylas and Rima Patel Sriganesh "Develor	oina	Java	a V	Veb
 Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", Pearson Education, 2004. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005 	Service	s". Wiley Publishing Inc. 2004.	Jing	oun		
Education, 2004. 3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	2. Sander	ep Chatteriee James Webber "Developing Enterprise Web Serv	ices	". P	ear	son
3. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers,2005	Educat	ion 2004		, .		2011
	3. McGov	ern, et al., "Java Web Services Architecture", Morgan Kaufmann Publish	ers.2	2005		
			,			

Upon completion of the course, students will be able to

CO1	Understand how to write XML documents
CO2	Apply XML based technologies and SOAP
CO3	Analyze the structure and implement Web Services
CO4	Understand and use RESTful web services
CO5	Create and Consume RESTful web service using JSON

COs				PR	OGR/	AM O	UTCC	MES	(POs	;)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	1	1	1	1	-	-	1	-	-	1	1	2	2	1		
CO2	2	1	1	1	1	-	-	1	-	-	1	1	2	2	1		
CO3	2	1	1	1	1	-	-	1	-	-	1	1	2	2	1		
CO4	2	1	1	1	1	-	-	1	-	-	1	1	2	2	1		
CO5	2	1	1	1	1	-	-	1	-	-	1	1	2	2	1		

DS1512	R PROGRAMMING FOR DATA SCIENCE	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To lear 	n basics and importance of R programming				
 To defi 	ne and manipulate R data structures, including vectors, factors, lists, and	dat	a frar	nes	; .
 To read 	I, write, and save data files and to tabulate the data using Factors				
 To creat 	te artful graphs to visualize complex data sets and functions and to quer	y th	e data	aba	se
 To perf 	orm statistical analysis on variety of data				1
UNIT I	INTRODUCTION TO R PROGRAMMING			1	Ģ
History and ov	erview of R - Install and configuration of R programming environment -	Sta	rting		
and ending R,	R as a scientific calculator, handling package, workspace, inspecting va	arial	bles,	С	01
operators and	expressions in R- Conditions and Loops -Functions: built-in and user	-def	fined		•
functions.					1
UNIT II	DATA STRUCTURES AND DATA MANIPULATION			1	
Vectors - Cor	nbining multiple vectors - Arrays and Matrices, Lists – Creating list	ts -	List		
operations – A	pplying functions to lists – Recursive lists, Data frames–Creating and Ad	cces	ssing	С	02
Data frames -	Merging Data Frames – Applying functions to Data frames, Data Transfo	rma	ition,		-
Outlier Detecti	on, String Operations - Regular Expressions - Date and Time Format				
Reading CSV,	Excel, and Built-in Datasets - Reading Text Files - Writing and Saving t	o Fi	les -		
HIIP Reques	t and REST APT - Web Scraping: Working with Messy Data - Re	enai	ming	С	03
Columns(Varia	ble Names) - Attaching / Detaching - Tabulating Data: Constructing) SI	mple		
Frequency Tar					
	GRAPHICS AND VISUALIZATION	. at a		1	
visualize data	using ggplotzpackage - Apply themes from ggthemes to refine and cu	JSTO	mize		
	Puilding data graphics for dynamic reporting. Data Quarving Write			6	.
statomonte - L	sing the Select From Where Is Like Order By Limit Max Min SOL fu	ny netir			0.
Data wrangling	with dolvr	notic	5115		
	STATISTICAL ANALYSIS				
Importing data	files exporting data outputting results exporting - Performing data	ana	lycic		
tasks: R comr	ands for descriptive statistics, data aggregation, representation of mu	ana Itiva	riato	C	م
data code fac	orization and ontimization statistical libraries in R	iliva	nate		0.
		· 4	5 PFF		
TEXT BOOKS					
1 Garrett	Grolemund and Hadley Wickham R for Data Science Import Ti	idv	Tran	efo	rm
	ze and Model Data O'Reilly Media 2016	uy,	man	1510	
visuali	Maltoff The Art of R programming O'Reilly Media, 2011				
2 Norma					
2. Norma					
2. Norma REFERENCE					
2. Norma REFERENCE 1. Purohit	S. G., Gore S. D., Deshmukh S. K., "Statistics using R", Narosa			_	
2. Norma REFERENCE 1. Purohit 2. Rizzo,	S. G., Gore S. D., Deshmukh S. K., "Statistics using R", Narosa VI. L., "Statistical Computing with R", Boca Raton, FL: Chapman & Hall/C	RC	Press	5	
 Norma REFERENCE Purohit Rizzo, Learnir 	S. G., Gore S. D., Deshmukh S. K., "Statistics using R", Narosa M. L., "Statistical Computing with R", Boca Raton, FL: Chapman & Hall/C g resources:	RC	Press	5	
 Norma REFERENCE Purohit Rizzo, Learnir R Pro 	S. G., Gore S. D., Deshmukh S. K., "Statistics using R", Narosa M. L., "Statistical Computing with R", Boca Raton, FL: Chapman & Hall/C g resources: ject: http://www.r-project.org/	RC	Press	8	
2. Norma REFERENCE 1. Purohit 2. Rizzo, 3. Learnir • R Pro • RStuc	S. G., Gore S. D., Deshmukh S. K., "Statistics using R", Narosa M. L., "Statistical Computing with R", Boca Raton, FL: Chapman & Hall/C g resources: ject: http://www.r-project.org/ lio: http://www.rstudio.com	RC	Press	5	

Upon completion of the course, students will be able to

CO1 Understand basics and importance of R programming

CO2 Understand data structures including vectors, factors, lists, and data frames.

CO3 Analyse the data files and to tabulate the data using Factors

CO4 Visualize complex data sets and functions and to query the database

CO5 Analyse and predict statistical data on variety of datasets

COs				PR	OGR/	AM O	итсс	MES	(POs	;)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2		
CO2	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2		
CO3	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2		
CO4	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2		
CO5	3	3	3	3	2	-	-	-	1	2	2	2	3	3	2		

DS1513	PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To lear 	n the background and basics of Prolog programming				
To lear	n the programming constructs to develop solution for specific problems				
🛠 To han	dle input and output operation through prolog and implementing data stru	uctur	e con	cep	ots
 To use 	prolog for artificial intelligence				
🛠 To app	y prolog for machine learning, game playing and meta programming				
UNIT I	AN OVERVIEW OF PROLOG				9
An Example p	rogram: defining family relations - extending the example program by	rule	– a		
recursive rule	definition - how prolog answers questions – declarative and procedural	mea	ning	~	7 1
of programs; S	Syntax and meaning of Prolog Programs: Data objects – Matching – De	clara	ative		וכ
and Procedura	I meaning – Orders of clauses and goals; Relation between Prolog and I	_ogio	2		
UNIT II	PROGRAMMING CONSTRUTS				9
List - Operat	ors – Arithmetic; Using Structures: Retrieving structured informati	on	from		
database - Da	ata abstraction – simulating a non-deterministic automation – travel pla	annii	ng –	CC	22
Eight queen p	oblem; Controlling Backtracking: Preventing backtracking – Examples u	using	g cut		52
 Negation as 	failure – problems with cut and negation				
UNIT III	I/O AND DATA STRUCTURES				9
Input and Out	put: Communication with files – Processing file of terms – Construc	ting	and		
Decomposing	atoms; Built-in Procedures – Programming Style and Techniques – Op	perat	ions		
on Data Struc	ctures: Representing and sorting list - Representing sets by binary	tree	es –	CC	23
Insertion and	deletion in binary dictionary – Displaying trees – Graphs; Advanc	ed .	Tree		
Representation	ns: 2-3 dictionary – AVL-tree				
	PROLOG IN ARTIFICIAL INTELLIGENCE				9
Basic problem	solving strategies – Best Fit – Problem Reduction and AND/OR Graphs	– E>	cpert		
Systems and	Knowledge Representation – An Expert System shell – Planning – L	angu	lage	CC	J 4
Processing wit		•			
	MACHINE LEARNING, GAME PLAYING AND META-PROGRAMMIN	G			9
Introduction: I	ne problem of learning concepts – Learning concept by induction – A	Proc	gram		
decision troop	Autorial descriptions – Learning simple autobutorial descriptions – Ind	inoir			
The alpha-bet	- Success of learning, Game Flaying. Two person - The minimax pro-	Dr		СС	25
meta-interprete	a algorithm, meta-riogramming. Meta-programs and meta-interpreters	- Pa	ttern		
directed progra	amming	-14	uem		
directed progra	тота	• 4			ns
TEXT BOOKS					20
1. Ivan B	ratko. Prolog Programming for Artificial Intelligence. Addison We	slev	Pub	ishi	na
Compa	ny, Fourth Edition, 2012	,			
REFERENCE	BOOKS				
2. Bramer	M, Logic Programming with Prolog, Springer, 2013				
3. Clocksi	n W, Mellish C S, Programming in Prolog, Springer, 2003				
-					

Upon completion of the course, students will be able to

CO1 Understand the basics of prolog

CO2 Develop solutions using programming constructs

CO3 Implement data structure concepts using prolog

CO4 Apply prolog in artificial intelligence

CO5 Apply prolog to implement game programming and meta programming

COs				PR	OGR/	AM O	итсс	MES	(POs	;)			PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	2	2	1	1	-	-	1	-	-	1	2	3	2	2		
CO2	3	2	2	1	1	-	-	1	-	-	1	2	3	2	2		
CO3	3	2	2	1	1	-	-	1	-	-	1	2	3	2	2		
CO4	3	2	2	1	1	-	-	1	-	-	1	2	3	2	2		
CO5	3	2	2	1	1	-	-	1	-	-	1	2	3	2	2		

DS15	14	DATA SCIENCE TOOLS	L	Т	Ρ	C
			3	0	0	3
OBJE	CTIVES					
*	To unde	erstand the concept of Data Science and import data on Tools				
*	To perfe	orm statistical tests using Data Science Tools.				
*	To perfe	orm specific statistical test using Data Science Tools				
*	To perfe	orm data storage, analysis and modeling using Data Science Tools.				
*	To learr	n visualization of data.				
		INTRODUCTION				
Introd	uction to	Data Tools - Why Data Science - Where to get data - Importing of	data	into		· ~
Excel,	Apache	Open Office, R and Rattle, Rstudio, KNIME.				,0
		STATISTICAL TESTS USING TOOLS				
Descri	iptive St	atistics using Excel, Open Office, RStudio / Rattle, KNIME - Cu	imul	ative		
Proba	bility Cha	rts using Excel, Open Office, RStudio / Rattle, KNIME – T – Test usin	ng E	xcel,		
Open	Office, R	Studio / Rattle, KNIME Correlation using using Excel, Open Office, F	RStu	dio /		`^
Rattle	, KNIME	- Regression using Excel, Open Office, RStudio / Rattle, KNIME - Co	onfid	ence		,0
Interva	al using I	Excel, Open Office, RStudio / Rattle, KNIME – Random Sampling usi	ng ι	ising		
Excel,	Open O	fice, RStudio / Rattle, KNIME.				
		STATISTICAL METHODS FOR SPECIFIC TOOLS				
Power	· –R/ RS	tudio / Rattle F-Test - Excel, R/ Rstudio / Rattle. Benford - Ratt	le, L	_ift –		`^
KNIM	E, Wordc	loud – R/Rstudio, KNIME. Filtering – All Tools.				.0
	V	DATASCIENCE TOOLS FOR DATA STORAGE				
Apach	e Hadoo	p – Microsoft HD insights – Data Science Tools for Exploratory Data A	naly	sis –		
Inform	atica Pov	verCenter – RapidMiner. Data Science Tools for Data Modelling – H2o.a	ai –	Data	C	:0
Robot						-
	V	DATA VISUALIZATION TOOLS				
Data S	Science ⁻	Fools for Visualization – Tableau – Qlikview. –DataScience Projects us	sing	R –		
Define	Problem	n Statements – Data Cleaning – Data Exploration & Analysis – Data Mo	odeli	ng –	C	;C
Deploy	yment &	Optimzation.				
		TOTAL	_ : 4	5 PE	RIC)D
TEXT	BOOKS					
1.	Data So	ience Tools: R • Excel • KNIME • OpenOfficeby Christopher Greco , 202	20.			
REFE	RENCE	BOOKS				
1.	Learnin	g tableau 2019: Tools for business intelligence, data prep and	visu	al a	nalv	/tio
	(3 rd edit	ion)			,	
2.	QlikViev	v 11 for Developers, Barry Harsen				
COUR	SF OUT	COMES				
Upon	complet	ion of the course, students will be able to				
- P - · · ·	Underst	and the concept of Data Science and import data on Tools				
CO1	Perform	statistical tests using Data Science Tools				
CO1	Derferre	specific statistical test using Data Science Tools				
CO1 CO2 CO3	Penom	speene stationour toot doing bata bolorioo 10010				
CO1 CO2 CO3	Perform	data storage, analysis and modeling using Data Science Tools				
CO1 CO2 CO3 CO4	Perform	data storage, analysis and modeling using Data Science Tools.				

COs CO1					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	2	2	2	-	-	-	-	2	2	2	3	3	3
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	3
CO4	2	2	3	3	2	-	-	-	-	2	2	2	3	3	3
CO5	2	2	2	2	2	-	-	-	-	2	2	2	3	3	3

IT1514 KNOWLEDGE ENGINEERING	L T P C
	3 0 0 3
OBJECTIVES	
 To learn about first order logics 	
 To acquire knowledge about reasoning 	
 To apply object-oriented concepts for various expert systems 	
To assess uncertainty using non monotonic logic	
To understand various action and planning strategies for problem so	ng
UNIT I INTRODUCTION	9
Knowledge Representation and Reasoning - First order Logic - Syntax- Se	antics Pragmatics
 Expressing Knowledge – Levels of Representation – Knowledge 	cquisition and
Sharing - Sharing Ontologies - Language Ontologies - Language Pa	terns – Tools for
Knowledge Acquisition	
UNIT II RESOLUTION AND REASONING	9
Proportional Case - Handling Variables and Quantifiers - Dealing v	h Intractability -
Reasoning with Horn Clauses - Procedural Control of Reasoning - Ru	s in Production- CO2
Description Logic - Issues in Engineering	
UNIT III REPRESENTATION	9
Object Oriented Representations – Frame Formalism – Structured Description	ns – Meaning and
Entailment - Taxonomies and Classification - Inheritance - Networks	- Strategies for CO3
Defeasible Inheritance – Formal Account of Inheritance Networks	
UNIT IV DEFAULTS, UNCERTAINTY AND EXPRESSIVENESS	9
Defaults – Introduction – Closed World Reasoning – Circumscription – Defa	It Logic imitations
of Logic - Fuzzy Logic - Non monotonic Logic - Theories and World -	Semiotics – Auto
epistemic Logic - Vagueness – Uncertainty and Degrees of Belief – Non cat	porical Reasoning CO4
- Objective and Subjective Probability- linguistic fuzzy rule-based classifica	on system - fuzzy
cognitive maps- fuzzy for large data	
UNIT V ACTIONS AND PLANNING	9
Explanation and Diagnosis – Purpose – Syntax, Semantics of Context – Fir	Order Reasoning
Modal Reasoning in Context – Encapsulating Objects in Context – A	ents – Actions –
Situational Calculus – Frame Problem – Complex Actions – Planning –	ips- Planning as CO5
Reasoning – Hierarchical and Conditional Planning	
	TOTAL : 45 PERIODS
TEXT BOOKS	
1. Michael K. Bergman "A Knowledge Representation Practionary	Guidance from Charles
Sanders Peirce." Springer -2018.	
2. Ronald Brachman, Hector Levesque, "Knowledge Representatio	and Reasoning ", The
Morgan Kaufmann Series, First Edition.	3
REFERENCE BOOKS	
1. John F. Sowa, "Knowledge Representation: Logical Philosop	cal, and Computational
Foundations". Brokes/Cole. First Edition 2000	
2. Arthur B. Markman "Knowledge Representation" Lawrence Erlbaum	Associates 1998
3. Flaine Rich and Kevin Knight "Artificial Intelligence" Tata McGrav	Hill Publishing Company
Ltd., New Delhi, Third Edition	

COUF	RSE	OUT	СОМ	ES												
Upon	cor	nplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Fo	ormula	ate pr	oblem	n in fir	st ord	er log	ic and	d onto	logies	5					
CO2	Im	Improve resolution and reasoning with horn clauses														
CO3	Ар	Apply object-oriented abstractions for knowledge representation														
CO4	Solve problems with uncertainty using fuzzy rules															
CO5	CO5 Design and develop applications with action and planning															
	MAPPING OF COs WITH POs AND PSOs															
PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC																
COs	6				PR	OGR/		итсс	MES	(POs	5)			PROG OUTC	RAM SP OMES (ECIFIC PSOs)
COs	6	PO1	PO2	PO3	PR PO4	OGRA PO5	AM O PO6	UTCC PO7	PO8	(POs	5) PO10	P011	P012	PROG OUTC PSO1	RAM SP OMES (PSO2	ECIFIC PSOs) PSO3
COs CO1	5	PO1	PO2	PO3 3	PR PO4 3	OGR P05 2	AM O PO6 -	UTCC PO7 -	PO8 -	(POs P09 -) PO10 2	PO11 2	PO12 2	PROG OUTC PSO1 3	RAM SP OMES (PSO2 3	ECIFIC PSOs) PSO3 2
COs CO1 CO2	5	PO1 3 3	PO2 3 3	PO3 3 3	PR(PO4 3 3	PO5 2 2	AM O PO6 - -	UTCC P07 - -	PO8 -	(POs PO9 - -	 PO10 2 2 	PO11 2 2	PO12 2 2	PROG OUTC PSO1 3 3	RAM SP OMES (PSO2 3 3	ECIFIC PSOs) PSO3 2 2
COs CO1 CO2 CO3	5	P01 3 3 3	PO2 3 3 3	PO3 3 3 3	PR PO4 3 3 3	PO5 2 2 2 2	AM O PO6 - -	UTCC P07 - -	PO8 - -	(POs PO9 - -	 PO10 2 2 2 2 	PO11 2 2 2 2	PO12 2 2 2	PROG OUTC PSO1 3 3 3	RAM SP OMES (PSO2 3 3 3 3	ECIFIC PSOs) PSO3 2 2 2 2
COs CO1 CO2 CO3 CO4	5	PO1 3 3 3 3 3	PO2 3 3 3 3 3	PO3 3 3 3 3	PR (PO4 3 3 3 3 3	OGR/ P05 2 2 2 2 2	AM O PO6 - - - -	UTCC P07 - - - -	PO8 - - - -	(POs PO9 - - - -	 PO10 2 2 2 2 2 2 2 	P011 2 2 2 2 2	PO12 2 2 2 2	PROG OUTC PS01 3 3 3 3 3 3	RAM SP OMES (PSO2 3 3 3 3 3	ECIFIC PSOs) PSO3 2 2 2 2 2 2

SEMESTER VI PROFESSIONAL ELECTIVE – II

DS1611	IMAGE AND VIDEO ANALYTICS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
To prov	vide a basic foundation towards digital image processing and video proce	ssin	g.		
 To lear 	n about image and video enhancement and restoration techniques.				
To prov	vide Compression methods for image analytics applications.				
 To Unc 	lerstand Compression methods for video analytics applications				
 To lear 	n about feature detection and description				
UNIT I	INTRODUCTION TO DIGITAL IMAGE AND VIDEO PROCESSING				9
Digital image	representation, Sampling and Quantization, Types of Images, Basic F	₹elati	ions		
between Pixel	s - Neighbors, Connectivity, Distance Measures between pixels, Linear	and	Non		
Linear Operati	ons, Introduction to Digital Video, Sampled Video, Video Transmission.			С	01
Gray-Level Pr	rocessing: Image Histogram, Linear and Non-linear point operations on	Ima	ges,		
Arithmetic Ope	erations between Images, Geometric Image Operations.				
Binary Image	Processing: Image Thresholding, Region labeling, Binary Image Morph	ology	У		
UNIT II	IMAGE AND VIDEO ENHANCEMENT AND RESTORATION				9
Spatial domain	n - Linear and Non-linear Filtering, Morphological filtering, Frequency d	oma	in –		
Homomorphic	Filtering, Blotch Detection and Removal - Blotch Detection, Motion Vector	or Re	pair		
and Interpola	ting Corrupted Intensities, Intensity Flicker Correction - Flicker Pa	aram	eter	C	02
Estimation, B	rief introduction towards Wavelets, Wavelet based image denoising	ј, В	asic		
methods for im	hage restoration using deconvolution filters				
UNIT III	IMAGE ANALYSIS				9
Image Comp	ression: Huffman coding, Run length coding, LZW coding, Lossless	Cod	ling,	С	03
			004		9
Standard, MPE	ression: Basic Concepts and Techniques of Video Coding and the EG-1 and MPEG-2 Video Standards	е Н.	264	C	04
UNIT V	FEATURE DETECTION AND DESCRIPTION				9
Introduction to	feature detectors, descriptors, matching and tracking, Basic edge det	ecto	rs –		
canny, sobel,	prewitt etc., Image Segmentation - Region Based Segmentation -	Re	gion	~	OF
Growing and F	Region Splitting and Merging, Thresholding – Basic global thresholding, o	optin	num		55
global thresho	ding using Otsu's Method				
	TOTAL	.: 45	5 PEF	RIO	DS
TEXT BOOK					
1. Alan Bo	ovik, Handbook of Image and Video Processing, Second Edition, Academ	nic P	ress,	200	05.
2. Rafael	C. Gonzalez and Richard E. Woods, Digital Image Processing, Third E	ditio	n, Pe	ears	son
Educat	ion, 2008.				
3. Richard	d Szeliski, Computer Vision – Algorithms and Applications, Springer, 201	1			
REFERENCE	BOOKS				
1. Anil K 、	Jain, Fundamentals of Digital Image Processing, PHI, 2011.				
2. Oge M	arques, Practical Image and Video Processing Using MatLab, Wiley, 201	1.			
3. John V	V. Woods, Multidimensional Signal, Image, Video Processing and Co	ding,	Aca	der	nic
Press,	2006				
`					

Upon completion of the course, students will be able to

CO1	Understand the fundamenta	I principles of image	and video analysis
-----	---------------------------	-----------------------	--------------------

CO2 Apply different filters for enhancement of image and video

CO3 Investigate different coding techniques.

CO4 Comprehend different compression techniques for video.

CO5 Apply the image and video analysis approaches to solve real world problems.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	3	3	-	-	-	-	2	2	2	3	3	3
CO2	2	3	2	3	3	-	-	-	-	2	2	2	3	3	3
CO3	1	2	2	3	3	-	-	-	-	2	2	2	3	3	3
CO4	3	2	1	3	3	-	-	-	-	2	2	2	3	3	3
CO5	1	2	3	3	3	-	-	-	-	2	2	2	3	3	3

DS1612

HEALTHCARE ANALYTICS

OBJE	CTIVES
*	To discuss th

- To discuss the role of data analytics in Healthcare and Biomedical data.
- To understand advanced Healthcare data analytics.
- To Identify techniques for data processing
- To understand various optimization and generalization techniques
- To understand various data model

UNIT I

INTRODUCTION

Introduction to Healthcare Data Analytics- Healthcare Data Sources and Basic Analytics-Electronic Health Records - Biomedical Image Analysis- Mining of Sensor Data in Healthcare-Biomedical Signal Analysis- Genomic Data Analysis for Personalized Medicine- Natural Language Processing and Data Mining for Clinical Text - Mining the Biomedical Literature.

UNIT II

ADVANCED HEALTHCARE DATA ANALYTICS

Advanced Data Analytics: Advanced Data Analytics for Healthcare– Review of Clinical. Prediction Models- Temporal Data Mining for Healthcare Data- Visual Analytics for Healthcare-Predictive Models for Integrating Clinical and Genomic Data- Information Retrieval for Healthcare- Privacy-Preserving Data Publishing Methods in Healthcare.

UNIT III DEEP NETWORKS AND DIMENTIONALITY REDUCTION

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning, Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

UNIT IV OPTIMIZATION AND GENERALIZATION

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience.

UNIT V BIGDATA ANALTICS FRAMEWORKS

Introduction to NoSQL – Aggregate Data Models – Hbase: Data Model and Implementations – Hbase Clients – Examples – .Cassandra: Data Model – Examples – Cassandra Clients – Hadoop Integration. Pig – Grunt – Pig Data Model – Pig Latin – developing and testing Pig Latin scripts. Hive – Data Types and File Formats – HiveQL Data Definition – HiveQL Data Manipulation – HiveQL Queries.

TOTAL : 45 PERIODS

L

3

т

0

Ρ

0

С

3

9

9

9

9

9

TEXT BOOKS

- Chandan K. Reddy and Charu C. Aggarwal," Healthcare Data Analytics", First Edition, Chapman & Hall /CRC Press 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

REFERENCE BOOKS

- 1. Ross M. Mullner Edward M. Rafalski, "Healthcare Analytics Foundations and Frontiers" First Edition, T&F/Routledge, 2020.
- 2. Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, Wiley, 2016.
- 3. El Morr, Christo, Ali-Hassan, Hossam, "Analytics in Healthcare", springer 2019.
- 4. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.
- 5. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 6. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- 7. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Describe the role of data analytics in healthcare institutions.
CO2	Describe advanced data analytics methods.
CO3	Apply data processing methods for processing healthcare data.
CO4	Apply Optimization and generalization Techniques.
CO5	Design Data Model that integrates healthcare data.

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO1	PO2	PO1	PO2	PO1	PO2	PO1	PO2	PO1	PO2	PO1	PO2	PO1
C01	2	2	2	2	2	-	-	-	-	2	2	2	2	3	2
CO2	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2
CO3	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2
CO4	3	3	3	3	3	-	-	-	-	2	2	2	2	3	2
CO5	2	2	2	2	2	-	-	-	-	2	2	2	2	3	2

DS16 ⁴	13	CLOUD COMPUTING FOR DATA ANALYSIS	L	Т	Ρ	С
			3	0	0	3
OBJE	CTIVES	I				
*	To learr	the basics of Cloud computing.				
*	To unde	erstand cloud storage				
*	To disc	uss serverless concept				
*		ride basics of edge computing				
*	To deve	lop projects pertaining to data science and cloud computing				
	1					Q
Overv	iew of C	oud Computing - Paas Continuous Delivery - IaC - Continuous Deli	verv	(for		
Hugo	Static Sit	e from Zero: Virtualization & Containerization: CPU – Memory – $1/O$ –	- Els	astic	CC	01
Resou		1000000000000000000000000000000000000		15110		51
						0
	n Databas	SECOD STORAGE			<u> </u>	
						<u>52</u> 0
EaaS	/Function	as a Service) - AWS Lambda - GCP Cloud Eurotions - Azuro Eurotions	- Λ	W/S		
	-Nativo E	as a Service) - AWS Lambda - GCF Cloud I unclines - Azure I unclines	- ^		~	<u></u>
Cogni	-NAUVE F	API Catoway	- /			55
						0
		AWS Greengrass - Paspherry Pi - Edge Machine Learning Solutions Ov	onvi	OW -		3
Good		- Tensorflow lite - Intel Movidius - Apple X12	CIVIC	.	C	Э4
	v V	DATA SCIENCE CASE STUDIES AND PRO IECTS				0
	Study: Dr	para concerne and cropics and recorded to be and the second	h	utor		
Vision		w: Project: AWS Deeplense Edge Computer Vision - Rasherry Pi		Intel		
Movid	ius Edae	Computer Vision - Serverless Data Engineering Pipelines - Operatio	nali	zina	C	25
Conta	inerized I	Aachine Learning Models - Continuous Delivery of GCP PaaS	, i i din	Zing		
Conta			· 45			DS
TFXT	BOOKS			. –		
1	Noah G	ift Cloud Computing for Data Science, Pragmatic ALLabs, 2020				
REFE						
1.	Frances	co Diaz and Roberto Freato, Cloud Data Design, Orchestration, and	d M	anag	eme	ent
	Using M	licrosoft Azure, Apress				
COUF	RSE OUT	COMES				
Upon	complet	ion of the course, students will be able to				
CO1	Underst	and the core concepts of the cloud computing paradigm.				
CO2	Illustrate	e the fundamental concepts of cloud storage and demonstrate their	use	in st	tora	ge
	systems					
CO3	Apply A	WS for problem solving				
CO4	Compre	hend edge computing				
00+						

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	2	2	-	2	2	2	2	3	2
CO2	3	3	3	3	3	-	2	2	-	2	2	2	2	3	2
CO3	3	3	3	3	3	-	2	2	-	2	2	2	2	3	2
CO4	3	3	3	3	3	-	2	2	-	2	2	2	2	3	2
CO5	2	2	2	2	2	-	2	2	-	2	2	2	2	3	2

DS1614	COMPUTATIONAL THINKING	L	Т	Ρ	С							
		3	0	0	3							
OBJECTIVES												
 To understand different optimization problems. 												
 To learn about random and stochastic process 												
 To learn about simulation condition for optimization problems 												
 To provide students with an understanding of the role statistics. 												
*	To use algorithms for classification and clustering problems.											
UNIT I	OPTIMIZATION PROBLEMS				9							
Knapsa	ck problem: Greedy Algorithms – 0/1 Knapsack Problem; Graph Optimization	Prob	lem									
Some o	lassic Graph theoretical problems – Shortest Path: Depth first and Breadth firs	t sea	arch	С	01							
Dynam	c Programming: Fibonacci sequences – 0/1 knapsack problem – divide and cor	nque	er									
UNIT II	RANDOM WALKS AND STOCHASTIC PROGRAMS			I	9							
Randor	n walks – The Drunkard's walk – Biased Random walks – Treacherous	s Fi	elds		·							
Stochas	tic Programs – Calculating simple probabilities – Inferential Statistics – Distril	outic	ns –	. (202							
Hashing	and Collisions											
UNIT II	SIMULATION AND SAMPLING				9							
Monte	Carlo Simulation: Pascal's Problem – Pass or Don't Pass? – Using Table L	ookı	up to									
Improve	Performance – Finding π ; Sampling and Confidence intervals: Sampling the	e Bo	ston		CO3							
Marath	on – The Central Limit Theorem – Standard Error of the Mean; Understan	ding	the		003							
experim	ental data: The behavior of springs – The behavior of Projectiles											
	RANDOMIZED TRIALS AND STATISTICS				9							
Checki	g significance - Beware of P-values - One tail and one sample tests -	Mu	ltiple	;								
Hypoth	esis; Conditional Probability and Bayesian statistics: Conditional Probabilities	– B	ayes		201							
Theore	n – Bayesian Updating; Lies, Demned Lies and statistics: Garbage In and Garl	bage	Out		504							
– Samp	ling Bias – Context Matters				1							
UNIT V	CLUSTERING AND CLASSIFICATION			-	9							
A Quic	CLook at Machine Learning: Feature vectors – Distance Metrics; Clustering	g: C	Class									
cluster	- k-means clustering - A Contrived Example - A Less Contrived I	Exar	nple;		205							
Classifi	cation Methods: Evaluating Classifiers – Predicting the Gender of Runner – I	k-ne	arest		505							
neighbo	rs – Regression based classifiers – Surviving the Titanic											
	тоти	۹L :	45 P	ERI	ODS							
TEXT E	OOK											
1.	John V Guttag, Introduction to Computation and Programming using python: v	vith	appli	catio	on to							
	understanding data, MIT Press, Second Edition											
REFER	ENCE BOOKS											
1.	Karl Beecher, Computational Thinking: A beginner's guide to problem solving a	ind p	orogi	amr	ning,							
BCS, The Charted Institute for IT												
COURS												
Upon c	ompletion of the course, students will be able to											
CO1	Inderstand of the role computation in solving problems.											
CO2	Apply stochastic models for problem solving											
CO3	Apply probability theory for simulation											
CO4	O4 Apply statistical models for computation.											
CO5	CO5 Develop projects pertaining to classification and clustering.											
·I												

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	-	-	1	-	-	1	1	3	3	2
CO2	3	3	2	1	1	-	-	1	-	-	1	1	3	3	2
CO3	3	3	2	1	1	-	-	1	-	-	1	1	3	2	2
CO4	3	3	2	1	1	-	-	1	-	-	1	1	3	2	2
CO5	3	3	2	1	1	-	-	1	-	-	1	1	3	2	2

DS1615	5	ETHICS IN DATA SCIENCE	L	т	Р	С								
			3	0	0	3								
OBJEC	TIVES		•	•	<u> </u>									
* .	To apply ethical frameworks, guidelines, and codes to all phases of the analytics process.													
÷ ·	 To describe the historical efforts in developing ethical practices in research. 													
*	 To identify how current standards provide a necessary but insufficient foundation for applying 													
	ethics in data science and analytics.													
*	 To reflect on and acknowledge the centrality of the human in the analytics process. 													
* -	To disti	nguish between what an organization would like to do, what can be d	one	tech	nnica	ally,								
,	what ca	an be done legally, and what should be done from an ethical pe	rspe	ctive	e w	nen								
	perform	ing and managing analytics projects.												
UNIT I		INTRODUCTION				9								
Ethics F	Review;	Business Ethics; Elements of Big Data Ethics: Cambridge Analytica (ex	xam	ple),										
Ethical	Guidelir	ies and Codes.			C	01								
UNIT II		ARTIFICIAL INTELLIGENCE				9								
Algorith	mic Bia	s, Analyzing Behavioral Big Data: Methodological, Practical, Ethical,	& N	loral		-								
Issues,	Al's Wh	ite Guy Problem Data Mining to Recruit Sick People License Plate Read	ders	L.		02								
UNIT III		RESEARCH ETHICS				9								
Necess	ary but	Not Sufficient, Legal Frameworks; Regional (US, Europe, Asia) Differen	ces,	The		· ^ 2								
4R's: R	euse, R	epurposing, (Re)Combining, Reanalysis.			C	03								
UNIT IV	T IV ETHICAL ISSUES													
Ethical	lssues i	n Sports and Healthcare; Wearable Device Data; Ethical Issues in HR	& Та	alent		<u>م</u>								
Analytic	s; Anal	/tics for Social Good.			U	04								
UNIT V		CASE STUDY				9								
Facebo	ok Moc	d Manipulation Facebook Faces New World Opioid Crisis; Disney /	Sta	ples										
Center	Monitor	ing Is Alexa So Dangerous? Smart Toys; Reducing Costs of Employe	e C	nurn	C	05								
Boss U	sing Sla	ack to Spy on You; Combatting Fake News Can Al Wipe Unconsciou	us B	ias?										
Child Al	buse Pr	evention.												
		TOTAL	.:4	5 PE	RIC	DS								
TEXT B	BOOKS													
1.	Davis, k	Kord, Ethics of Big Data, O'Reilly,												
REFER	ENCE E	BOOKS												
1.	Loukide	s, Mike, Hilary Mason, and DJ Patil. 2018. Ethics and Data Science. S	Seba	stop	ol,	CA:								
(O'Reilly	Media.												
2.	Global B	Engineering Ethics (2017), by Heinz Luegenbiehl and Rockwell Clancy, I	Else	vier	Pres	SS								
COURS	SE OUT	COMES												
Upon c	omplet	ion of the course, students will be able to												
CO1	Apply et	hical frameworks, guidelines, and codes to all phases of the analytics pr	oce	SS.										
CO2 I	2 Describe the historical efforts in developing ethical practices in research.													
	Identify	how current standards provide a necessary but insufficient foundation	on f	or a	pply	ving								
003	ethics in data science and analytics.													
CO4 I	Reflect	on and acknowledge the centrality of the human in the analytics process												
	Distingu	ish between what an organization would like to do, what can be done to	echr	nicall	y, w	hat								
CO5	can be	done legally, and what should be done from an ethical perspective w	hen	per	form	ning								
	and mai	paging analytics projects												

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	3	2	3	3	2	2	2	2	2	2	2	2
CO3	3	3	2	3	2	3	3	2	2	2	2	2	2	2	2
CO4	3	3	2	3	2	3	3	2	2	2	2	2	2	2	2
CO5	3	3	2	3	2	3	3	2	2	2	2	2	2	2	2

SEMESTER VII PROFESSIONAL ELECTIVE – III

DS1711	DATA AND INFORMATION SECURITY	L	Т	P C
		3	1	0 3
OBJECTIVES	3			
 To une 	derstand the data security fundamentals as well as Cryptography Theories	s, Al	gorith	າms
and	Systems.		•	
 To ap 	bly the various Authentication Schemes to simulate different applications.			
To une	derstand the various security standards, threats and vulnerabilities.			
🛠 To un	derstand fundamentals of information security in various fields			
 To une 	derstand various security services and their practices.			
UNIT I	DATA SECURITY FUNDAMENTALS			ę
Security tren	ds – Security attacks, services and mechanisms – OSI security archit	tectu	ıre -	
Types of Clas	ssical Encryption Techniques - Block Ciphers and stream ciphers - DES	– A	ES -	CO1
Public key cry	rptosystems - RSA-Diffie Hellman Key Exchange - Elliptic curve Cryptogra	aphy		
UNIT II	MESSAGE AUTHENTICATION AND INTEGRITY			ç
Authentication	n requirement – Authentication function – MAC – Hash function – SHA	–Di	gital	
signature and	authentication protocols – DSS- Entity Authentication: Biometrics, Pas	sswo	ords,	CO2
Challenge Re	sponse protocols- Authentication applications – Kerberos, X.509-key distr	ibuti	ion.	
UNIT III	SYSTEM SECURITY			ę
Electronic Ma	il security – PGP, S/MIME – IP security – Web Security – SYSTEM SEC	CUR	ITY:	C01
Intruders – M	alicious software – viruses – Firewalls.			03
UNIT IV	INFORMATION SECURITY			ę
Introduction-V	Vhat is information security-Identification and Authentication-Authoriza	tion	and	CO4
Access Contr	ol-Auditing and Accountability-Operation Security.			
UNIT V	SECURITY PRACTICES			ę
Human Elem	ent Security -Physical Security-Mobile, Embedded and IoT Security-Ap	plica	ation	COS
Security-Asse	essing security.			
	TOTAL	.:4	5 PE	RIODS
TEXT BOOK	8			
1. Williar	n Stallings, Cryptography and Network Security Principles and	Pr	ractic	e, 6 ^{tt}
Editio	n,Pearson Education,2014.			
2. Jason	Andress, Foundations of Information security (A Straightforward Introdu	ctior	n) no	starch
press,	San Francisco,William Pollock,2019.			
REFERENCE	BOOKS			
1. CKS	hyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Networl	kSec	curity	, Wiley
India I	Pvt.Ltd, 2011.			
india i		7		
2. Behro	uzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007	•		
2. Behro 3. Charli	uzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007 e Kaufman, Radia Perlman, and Mike Speciner, Network Secu	Irity:	PR	IVATE

COOR	COURSE OUTCOMES											
Upon completion of the course, students will be able to												
CO1	Understand the fundamentals of data security and apply the different cryptographic operations											
	of symmetric and public cryptographic algorithms.											
CO2	Apply the various Authentication schemes to simulate different applications.											
CO3	Understand various System security standards, threats and vulnerabilities.											
CO4	Understand fundamentals of information security in various fields.											
CO5	Understand various security services and their security practices.											

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	-	-	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	-	-	-	2	2	2	3	2	2
CO5	3	3	3	3	2	-	-	-	-	2	2	2	3	2	2
DS1712	EVOLUTIONARY COMPUTATION	Ρ	С												
--	--	-------------	------------												
	3 0	0	3												
OBJECTIVES															
 Understa course, r optimisa 	and the relations between the most important evolutionary algorithms presented new algorithms to be found in the literature now or in the future, and other searc tion techniques.	in t h a	the Ind												
 Understa 	and the implementation issues of evolutionary algorithms.														
 Determir well. 	ne the appropriate parameter settings to make different evolutionary algorithms	s wo	ork												
 Formulat represent 	te a problem as an evolutionary computation search/optimization by spec ntations, selection and variation operators.	cifyi	ng												
 Design r and scie 	new evolutionary operators, representations and fitness functions for specific prantific applications.	acti	cal												
UNIT I	INTRODUCTION		9												
Optimization – Computation: A Classification; F concepts in ge Programming –	Robust Adaptation – Machine Intelligence – Applications of Evolutionary applications in Planning – Design – Simulation and Identification – Control – Principles of Evolutionary Processes - Principles of Genetics: Fundamental netics – the gene – options for change – population thinking; Evolutionary Genetic Algorithms – Evolution strategies	C	01												
	EVOLUTIONARY ALGORITUMS AND TUEIR STANDARDINSTANCES		9												
General outline mutations and o the archetype o strategies; Evolu- classifier system	of evolutionary algorithms – Genetic algorithms: basics and some variations – crossover – Representation – Parallel genetic algorithms; Evolution strategies: of evolution strategies – contemporary evolution strategies – nested evolution utionary Programming - Derivative methods in genetic programming - Learning ns - Hybrid methods	C	22												
UNIT III	REPRESENTATION		9												
Introduction to Combined repre- integers to per representations search; Finite-s structures – Intro	representations: Solutions and representations - Irnportant representations - esentations; Binary strings - Real-valued vectors; Permutations - Mapping rmutations - The mapping function - Matrix representations - Alternative - Ordering schemata and other metrics - Operator descriptions and local state representations - Parse trees - Other representations: Mixed-integer ons - Diploid representations	C	03												
UNIT IV	SELECTION		9												
Introduction to s Proportional sel Sampling – The Other selection Interactive evolution	selection: Working mechanisms – Pseudocode - Theory of selective pressure; lection and sampling algorithms: Fitness functions - Selection probabilities – eory; Tournament selection - Rank-based selection - Boltzmann selection - methods - Generation gap methods - comparison of selection mechanisms - ution	C	04												
UNIT V	SEARCH OPERATORS		9												
Mutation operate - Parse trees - Permutations - Multiparent rec operators - Gen	ors: Binary strings - Real-valued vectors - Permutations - Finite-state machines Other representations; Recombination: Binary strings - Real-valued vectors - Finite-state machines - Crossover: parse trees - Other representations - ombination; Other operators: The Baldwin effect - Knowledge-augmented e duplication and deletion	C	25												
	TOTAL: 45 PER	RIOI	DS												

TEXT BOOKS

1. Thomas Bäck, David B Fogel and Zbigniew Michalewicz, Evolutionary Computation 1 - Basic Algorithms and Operators, Taylor & Francis

D

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Review the evolutionary computation techniques

CO2 Investigate evolutionary algorithms

CO3 Apply representation concept for evolutionary computation problems

CO4 Analyze selection operation concept for evolutionary computation problems

CO5 Formulate a problem as an evolutionary computation search/optimization by specifying representations, selection and variation operators.

COs	COs PROGRAM OUTCOMES (POs)														ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	2	2	-	2	2	2	3	3	2
CO2	3	3	3	3	2	-	2	2	-	2	2	2	3	3	2
CO3	3	3	3	3	2	-	2	2	-	2	2	2	3	3	2
CO4	3	3	3	3	2	-	2	2	-	2	2	2	3	2	2
CO5	3	3	3	3	2	-	2	2	-	2	2	2	3	2	2

DS1713	PATTERN RECOGNITION	L	Τ	Ρ	С
		3	0	0	3
OBJECTIVES		-			-
 To und 	erstand the basic pattern recognition concepts.				
 Apply t 	ne mathematical foundations for recognition of patterns.				
 Identify 	the pattern Recognition models.				
 To stud 	y various pattern matching techniques.				
 Apply t 	he non-parametric techniques and clustering techniques in pattern Re	cogn	ition	in ı	real
time ap	plications.	U			
	INTRODUCTION				9
Introduction: E	asics of pattern recognition – Design principles of pattern recognition s	svste	em –		
Learning and	adaptation – Pattern recognition approaches. Mathematical foundation	s: Li	near	_	
algebra – Pro	pability theory – Expectation – Mean and Covariance – Normal distri	ibuti	on –	C	:01
Multivariate no	rmal densities – Chi square test of hypothesis.		-		
UNIT II	STATISTICAL PATTERN RECOGNITION				9
Statistical Patt	en Recognition: Bayesian Decision Theory – Classifiers – Normal der	nsitv	and	-	<u> </u>
discriminant fu	nctions.	.,	_ `	C	:02
UNIT III	MODELS				9
Parameter es	timation methods: Maximum-Likelihood estimation – Bavesian Pa	aram	neter		1
estimation - [Dimension reduction methods – Principal Component Analysis (PCA)	– Fi	sher	_	
Linear discrim	inant analysis – Expectation – maximization (EM) – Hidden Markov	/ Mc	dels	C	:03
(HMM) – Gaus	sian mixture models.				
	NON-PARAMETRIC TECHNIQUES				9
Nonparametric	Techniques: Density Estimation – Parzen Windows – K-Nearest I	Neig	hbor		
Estimation – N	earest Neighbor Rule – Fuzzy classification.	U		C	:04
UNIT V	CLUSTERING TECHNIQUES			•	9
Unsupervised	Learning and Clustering: Criterion functions for clustering - C	luste	ering		
Techniques: I	terative square – Error partitional clustering – K-Means – agglo	mer	ative	С	:05
hierarchical clu	istering – Cluster validation.				
	ΤΟΤΑ	L: 4	5 PEI	RIO	DS
REFERENCE	BOOKS				
1. Richard	I O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification",	Seco	ond E	Editi	ion,
John W	'iley, 2006.				
2. Bishop	Christopher M., "Pattern Recognition and Machine Learning", First E	ditio	n, Sp	ring	ger,
2009.					
3. S. The	odoridis, K. Koutroumbas, "Pattern Recognition", Fourth Edition, Academ	ic P	ress,	200	09.
4. Keinos	uke Fukunaga, "Introduction to Statistical Pattern Recognition", S	Seco	nd E	Editi	ion,
Acader	nic Press, 2003.				
5. Sergios	Thedoridis, Konstantinos Koutroumbas, "Pattern Recognition",	Fou	th E	Editi	ion,
Acader	nic Press, 2009.				
COURSE OUT	COMES				
Upon comple	ion of the course, students will be able to				
	erstand the basic pattern recognition concepts.				
	ne mathematical foundations for recognition of patterns.				
CO1 To und CO2 Apply t	V 1				
CO2 Apply t CO3 Identify	the pattern Recognition models.				
CO2 Apply the CO3 Identify CO4 To stud	the pattern Recognition models. y various pattern matching techniques.				
CO2 Apply the CO3 Identify CO4 To stude CO5 Apply the CO5	the pattern Recognition models. y various pattern matching techniques. arious clustering algorithms				

COs					PROGI OUTC	RAM SP OMES (ECIFIC PSOs)								
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO2	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO3	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO4	3 3 3 3 3 2 3 2 - - 3 2 2 4 3 3 3 3 2 3 2 - - 3 2 2										2	3	3	3	
CO5	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3

_	4 WEB ANALYTICS	L	Т	Ρ	С
		3	0	0	3
OBJE	CTIVES				
*	To Be introduced to Web Analytics.				
*	Be aware of some Web-based Analytics and software products.				
*	Be aware of the different analytics tools.				
*	Learn Affiliate, Internet, and Referral Marketing.				
*	Understand advertising using analytics.				
UNIT	INTRODUCTION			-	9
Under	tanding web analytics – The foundations of Web analytics: Techniqu	Jes	and		-01
Techr	logies – Present and Future of Web analytics.				
UNIT	DATA COLLECTION				9
Impor	nce and Options –Web server log files: Click stream data – User submitted inf	orma	ation	C	• ^ 2
– We	server performance data – Page tags –First and third party tracking			Ŭ	.02
UNIT	I WEB ANALYTICS STRATEGY				9
Key p	rformance indicators – Web analytics process – Heuristics evaluations – Site vis	sits –	•		
Surve	s – Measuring reach – Measuring acquisition – Measuring conversion – Measur	ing		С	:03
retent	n – Security and privacy implications of Web analytics				-
UNIT	/ WEB ANALYTICS TOOLS				9
Conte	t organization tools - Process measurement tools - Visitor segmentation	too	ls –		
Camp	ign analysis tools – Commerce measurement tools – Google analytics – On	nnitu	re –	C	:04
Web t	ends – Yahoo! Web analytics				
UNIT					
	GOOGLE ANALYTICS				9
Key fe	atures and capabilities – Quantitative and qualitative data - Working of Google	anal	ytics	с	9 05
Key fe – Priv	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files	anal	ytics	С	9 05
Key fr – Priv	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA	anal L: 4	ytics 5 PE	C	9 05 0DS
Key fe – Priv TEXT	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA BOOKS Bernard L. Japage . Understanding . Lasr Web. Interactions .via. Web. applicit	anal L: 4	ytics 5 PE		9 05 005
Key fu – Priv TEXT	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA 300KS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Clavpool 2009	anal L: 4	ytics 5 PE	C RIO	9 05 005
Key fr – Priv TEXT 1.	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA BOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009.	anal L: 4 s, N	ytics 5 PEI Aorga	C RIO	9 005 0DS
Key fı – Priv TEXT 1. 2.	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA 300KS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015.	anal L: 4 s, N	ytics 5 PEI ⁄lorga	C RIO	9 005 008 and
Key fr – Priv TEXT 1. 2. REFE	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA SOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS	anal L: 4 s, N	ytics 5 PEI /lorga	C RIO	9 005 005 and
Key fr – Priv TEXT 1. 2. REFE 1.	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOGLE ANALYTICS cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Difference Advected web meetrice with Oceasia enclottice	anal L: 4:	ytics 5 PEI Aorga	C RIO an a	9 205 205 205 205 205 205
Key fı – Priv TEXT 1. 2. REFE 1. 2.	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA 300KS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor	anal L: 4: cs, N	ytics 5 PEI Aorga	C RIO an a	9 005 005 005 005 005 005 005
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3.	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor	anal L: 4 cs, N	ytics 5 PE Aorga 012. Sons,	C RIO an a 20	9 9 9 9 9 9 9 9 9 9
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF	atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA BOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and SE OUTCOMES	anal L: 4! cs, N	ytics 5 PEI Aorga 012. Sons,	C RIO an a 20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA SOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor SE OUTCOMES Completion of the course, students will be able to	anal L: 4: cs, N	ytics 5 PE Aorga 012. Sons,	C RIO an a 20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1	I GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOGLE ANALYTICS Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Analytics Completion of the course, students will be able to Explain the f	anal L: 4 ss, N	ytics 5 PE Aorga 012. Sons,	20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2	GOOGLE ANALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOGLE ANALYTICS Totas TOTA GOOGLE ANALYTICS TOTA TOTA GOOGLE ANALYTICS TOTA TOTA GOOGLE ANALYTICS TOTA GOOGLE ANALYTICS TOTA GOOGLE ANALYTICS TOTA GOOGLE ANALYTICS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Completion of the course, students will be able to Explain the foundations of	anal L: 4 ss, N	ytics 5 PEI Aorga 012. Sons, etrics	C RIO an a 20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2	Image: Google Analytics atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA GOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. EENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Se OUTCOMES completion of the course, students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of their inherent limitations Apply web analytics to charge to effectively use the resulting incident to support	anal L: 4 cs, N ns, 2 and 5	ytics 5 PE Morga 012. Sons, etrics	20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2 CO3	Image: Google AnALYTICS atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA BOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Se OUTCOMES completion of the course, students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of their inherent limitations Apply web analytics techniques to effectively use the resulting insights to support design decisions, campaign ontimization, search analytics, otc.	anal L: 4 s, N and S on me	ytics 5 PEI Aorga 012. Sons, etrics	20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2 CO3	Image: Coogle Analytics atures and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA Sooks Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Brian Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira the clickstream data collection techniques, their impact of their inherent limitations Apply web analytics techniques to effectively use the resulting insights to suppoind design de	anal L: 4 cs, N and S on me	ytics 5 PEI Aorga 012. Sons, etrics ebsite	20	205 205 205 205 205 205 205 205 205 205
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2 CO3 CO4	Image: Coordination of the course, students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of the course students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of the course students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of their inherent limitations Apply web analytics techniques to effectively use the resulting insights to support design decisions, campaign optimization, search analytics, etc	anal L: 4 ss, N and S on me ort we	ytics 5 PE Aorga 012. Sons, etrics ebsite	20	205 205 2005 2005 2005 2005 2005 2005 2
Key fr – Priv TEXT 1. 2. REFE 1. 2. 3. COUF Upon CO1 CO2 CO3 CO4	Interest and capabilities – Quantitative and qualitative data - Working of Google cy - Tracking visitor clicks, Outbound links and Non HTML files TOTA TOTA GOOGLE ANALYTICS tracking visitor clicks, Outbound links and Non HTML files TOTA GOOKS Bernard J. Jansen, Understanding User-Web Interactions via Web analytic Claypool, 2009. Justin Cutroni, Google Analytics, O"Reilly, 2015. ENCE BOOKS Avinash Kaushik, Web Analytics2.0, John Wiley and Sons, 2010. Branc Clifton, Advanced web metrics with Google analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford, Joe Teixeira and Mary E. Tyler, Google Analytics, John Wiley and Sor Jerri L. Ledford for the course, students will be able to Explain the foundations of Web analytics Compare and contrast the clickstream data collection techniques, their impact of their inherent limitations Apply web analytics techniques to effectively use the resulting insights to support design decisions, campaign optimization, search analytics, etc Understand the basics of software tools, techniques, and reports that are releva analytics apply them to solve problems Analyze and interpret web channed data and understood the difficulties and	anal L: 4 cs, N and S and S on me ort we	ytics 5 PEI Aorga 012. Sons, etrics ebsite	20 , ar	205 205 205 205 205 205 205 205 205 205

COs				PR	OGR	AM O	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)					
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P01													PSO2	PSO3
CO1	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO2	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO3	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO4	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3
CO5	3	3	3	3	2	3	2	-	-	3	2	2	3	3	3

MC1001			т	Р	<u> </u>
WIGTOOT		2	0	Г 0	2
		5	0	0	5
To ena	ble the students to study the evolution of Management				
↔ To stuc	ly the functions and principles of management				
	n the application of the principles in an organization				
					•
	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS				9
	anagement – Science or Art – Manager vs Entrepreneur - types of ma	nage	ers -		
managenar for	es and skills – Evolution of Management – Scientific, numan relations	, Sys otor	stem	~	0 1
and continger	registry approaches – Types of Business organization - Sole proprie		and		
Environment -	Current trends and issues in Management	ure	anu		
	PLANNING				Q
Nature and pu	roose of planning – planning process – types of planning – objectives -	- 50	ttina		3
objectives – r	policies – Planning premises – Strategic Management – Planning To	nols	and	C	02
Techniques –	Decision making steps and process.		ana		02
	ORGANISING				9
Nature and pu	Irpose – Formal and informal organization – organization chart – orga	aniza	ation		
structure – typ	es – Line and staff authority – departmentalization – delegation of authority	ority	-77		
centralization	and decentralization – Job Design - Human Resource Managemer	nt —	HR	C	03
Planning, Rec	ruitment, selection, Training and Development, Performance Manag	eme	ent,		
Career plannir	g and management				
UNIT IV	DIRECTING				9
Foundations of	f individual and group behaviour – motivation – motivation theories – mot	ivati	onal		
techniques – jo	bb satisfaction – job enrichment – leadership – types and theories of lead	lersł	nip –	C	∩ 4
communicatior	n – process of communication – barrier in communication –	effe	ctive	0	04
communication	–communication and IT.				
UNIT V	CONTROLLING				9
System and pi	ocess of controlling – budgetary and non-budgetary control techniques	– us	se of		
computers and	IT in Management control – Productivity problems and management -	- co	ntrol	C	05
and performan	ce – direct and preventive control – reporting.				
	TOTAL	.:4	5 PEF	RIO	DS
TEXT BOOKS					
1. Stephe Edition	n P. Robbins & Mary Coulter, "Management", Prentice Hall (India) 2009.	Pvt.	Ltd.	, 10	0th
2. JAF Sto 2004.	oner, Freeman R.E and Daniel R Gilbert "Management", Pearson Educat	ion,	6th E	diti	on,
REFERENCE	BOOKS				
1. Stephe Pearso	n A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals o n Education, 7th Edition, 2011.	f Ma	anage	me	ent"
2. Robert	Kreitner & Mamata Mohapatra, " Management", Biztantra, 2008.				
3. Harold	Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill	1998	8.		
4 Trinath	v PC & Reddy PN "Principles of Management" Tata McGraw Hill 1999				

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Familiar with Management and Organizations task

CO2 Decision Making and Planning

CO3 Know about HRM, Performance Management, HR planning.

CO4 Communication and Motivational Theories

CO5 Familiar with controlling of process and reporting

COs				PR	OGR/		UTCC	MES	(POs)			PROGRAM SPECIFIC OUTCOMES (PSOs)					
000	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	3	3	3	-	-	-	-	-	-	-	3	-	2	2	2			
CO2	3	3	3	-	-	-	-	-	-	-	3	-	2	2	2			
CO3	3	3	3	-	-	-	-	-	-	-	3	-	2	2	2			
CO4	3	3	3	-	-	-	-	-	-	-	3	-	2	2	2			
CO5	3	3	3	-	-	-	-	-	-	-	3	-	2	2	2			

SEMESTER VII PROFESSIONAL ELECTIVE – IV

DS1721	STOCHASTIC PROCESS	1	т	Р	C								
		3	0	0	3								
OBJECTIVES		•	•	-	<u> </u>								
 Study c 	f the basic concepts of the theory of stochastic processes;												
 Introduce 	ce of the most important types of stochastic processes;												
 Study s 	simplest and important classes of stochastic processes namely Pois	son	proc	ess	ses,								
Branch	ng processes, Renewal Processes and Markov chains.												
 Learn t 	ne applications of Stationary Processes												
UNIT I	UNIT I INTRODUCTION TO STOCHASTIC PROCESSES Classification of Stochastic Processes, Markov Processes – Markov Chain - Countable State												
Classification of Stochastic Processes, Markov Processes – Markov Chain - Countable State													
Markov Chain. Transition Probabilities, Transition Probability Matrix. Chapman - Kolmogorov's													
Equations, Calculation of n - step Transition Probability and its limit													
UNIT II POISSON PROCESS													
Classification of	of States, Recurrent and Transient States - Transient Markov Chain,	Ran	dom										
Walk and Gar	nbler's Ruin Problem. Continuous Time Markov Process:, Poisson Pro	oces	ses,	C	02								
Birth and Deat	n Processes, Kolmogorov's Differential Equations, Applications												
	BRANCHING PROCESS				9								
Branching Pro	cesses – Galton – Watson Branching Process - Properties of Ge	enera	ating										
Functions – E	xtinction Probabilities – Distribution of Total Number of Progeny. Co	ncep	ot of	C	03								
Weiner Proces	S				<u> </u>								
	RENEWAL PROCESS				9								
Renewal Proce	esses – Renewal Process in Discrete and Continuous Time – Renewal I	nter	/al –										
Renewal Funct	tion and Renewal Density – Renewal Equation – Renewal theorems: Ele	emer	ntary	C	04								
Renewal Theo	rem. Probability Generating Function of Renewal Processes				<u> </u>								
	STATIONARY PROCESS				9								
Stationary Pro	cesses: Discrete Parameter Stochastic Process – Application to Time	e Se	ries.										
Auto-covarianc	e and Auto-correlation functions and their properties. Moving	Aver	age,	С	:05								
Autoregressive	Autoregressive Moving Average, Autoregressive Integrated Moving	Ave	rage										
Processes. Ba	sic ideas of residual analysis, diagnostic checking, forecasting												
	ΤΟΤΑ	L: 4:	5 PE	RIO	DS								
1. R.G Ga	Illager, Stochastic Processes, Cambridge University Press, 2013.												
REFERENCE	BOOKS												
1. Stochastic Processes from Applications to Theory, P.D Moral and S. Penev, CRC Press, 2016													
2. BC. Liliana, A Viswanathan, S. Dharmaraja, Introduction to Probability and Stochastic													
Proces	ses with Applications, whey Pvt. Ltd, 2012.												

COUF	COURSE OUTCOMES															
Upon	Upon completion of the course, students will be able to															
CO1	Col Classify a stochastic process, understand markov processes and handle discrete state															
	markov chain properties with transition probability matrix.															
CO2	Understand the classification of states of markov chain, continuous markov chain and Poisson															
	processes															
CO3	CO3 Explore the Branching processes															
CO4	CO3 Explore the Branching processes CO4 Explore the Renewal processes															
CO5	Un	derst	tand t	he Sta	ationa	ry Pro	ocess	es an	d app	ly the	same	for so	me rea	l life app	lications	
	MAPPING OF COs WITH POs AND PSOs															
					DD				MEG		•			PROG	RAM SP	ECIFIC
COs	5									(FUS	97	-	-	OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01		3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO2	2	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO3	3	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO4	•	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO5	5	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2

DS1722	SOFTWARE TESTING USING AUTOMATED TOOLS L T	Ρ	С
	3 0	0	3
OBJECTIVES			
 To dev 	elop and validate a test plan		
To sele	ect and prepare test cases		
 To ider 	ntify the need for testing		
🛠 To pre	pare testing policies and standards		
To use	testing aids and tools		
UNIT I	INTRODUCTION		9
Testing as an Software Test Origins of Defe – Defect Exar Prevention Str	Engineering Activity – Testing as a Process – testing axioms - Basic Definitions – ing Principles – The Tester's Role in a Software Development Organization – ects – cost of defects - Defect Classes – The Defect Repository and Test Design nples – Developer/Tester Support for Developing a Defect Repository – Defect ategies – Software Testing Life cycle – V model	C	01
UNIT II	TEST CASE DESIGN		9
Test Case De Testing – Re Equivalence C - Compatibility Approach to T functional test Role in White- Criteria	sign Strategies – Using Black Box Approach to Test Case Design - Random equirements based testing –Boundary Value Analysis – Decision tables - I ass Partitioning - State-based testing – Cause-effect graphing – Error guessing y testing – User documentation testing –Domain testing Using White Box est design – Test Adequacy Criteria – static testing vs. structural testing – code ing - Coverage and Control Flow Graphs – Covering Code Logic – Paths – Their -box Based Test Design –code complexity testing – Evaluating Test Adequacy	C	02
UNIT III	LEVELS OF TESTING		9
The Need for The Test Har Designing Inter- elimination Sy- Internationalize Usability and 2 documentation	Levels of Testing – Unit Test – Unit Test Planning –Designing the Unit Tests - rness – Running the Unit tests and Recording results – Integration tests – egration Tests – Integration Test Planning – Scenario testing – Defect bash stem Testing – Acceptance testing – Performance testing - Regression Testing – ation testing – Ad-hoc testing -Alpha , Beta Tests – testing OO systems – Accessibility testing – Configuration testing - Compatibility testing – Testing the n –Website testing –Static testing –reviews - walkthrough	C	03
UNIT IV	TEST MANAGEMENT		9
People and or services - Tes Items – test. m Test Planning test specialist management	ganizational issues in testing – organization structures for testing teams – testing t Planning – Test Plan Components – Test Pl and Attachments – Locating Test nanagement – test process - Reporting Test Results – The role of three groups in and Policy Development – Introducing the test specialist – Skills needed by a – Building a Testing Group – Designing test cases using MS-Excel –Test Data	C	04
UNIT V	TEST AUTOMATION	<u> </u>	9
Software test architecture for Introduction to driver for auto	automation – skills needed for automation – scope of automation – design and or automation –requirements for a test tool – challenges in automation - o Selenium, using Selenium IDE for automation testing, using Selenium Web mation testing, understanding Testing framework with Selenium Web driver for	C	05
automation tes	sting		

TEXT	BO	OKS														
1.	Sr	inivas	san D	esika	n and	Gopa	alaswa	amy F	Rame	sh, "S	oftwar	e Testi	ing – P	rinciples	and Pra	ctices",
	Pe	arso	n edu	catior	n, 200	6.										
2.	lle	ene B	urnst	ein, "	Prac	tical S	Softw	are T	estin	g", Sj	oringe	r Inter	nation	al Editio	on, 2012	
REFE	RE		BOOI	٢S												
1.	1. Ron Patton, "Software Testing", Second Edition, Sams Publishing, Pearson,2007															
2.	Re	enu	Raja	ni, F	Prade	ep (Jak,	"Sof	tware	Te	sting	–Effe	ctive	Methods	s, Tool	s and
	Τe	chnic	ques",	ТМН	2004											
3.	Re	ex Bla	ack (2	001),	Mana	iging t	the Te	esting	Proc	ess (2	nd edi	tion), J	lohn W	iley & So	on	
4.	Do	orothy	/ Gra	ham,	Erik	van V	'eene	ndaal	, Isab	el Ev	ans, F	ounda	itions o	of softwa	are testir	ıg, Rex
	Bla	ack														
5.	Elf	friede	Dus	tin, Ir	nplem	nentin	g Aut	omat	ed So	oftwar	e Test	ting: H	low to	Save T	ime and	Lower
	Сс	osts V	Vhile	Raisir	ng Qu	ality										
COUR	RSE	OUT	СОМ	ES												
Upon	cor	nplet	ion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Ur	nderst	tand t	he typ	oes of	error	s and	fault	mode	ls						
CO2	Cr	eate	test c	ases	rom r	equire	ement	ts								
CO3	An	nalyze	e use	o vari	ous te	esting	tools									
CO4	Εv	aluat	e ade	quac	/ asse	essme	ent us	ing: c	ontrol	flow,	data fl	ow, an	id prog	ram mut	ations	
CO5	Ар	ply s	oftwa	re tes	ting te	echnic	ues i	n com	merc	ial en	vironm	ents				
					Μ	APPI	NG O	F CO	s WI	ГН РС)s AN[D PSO	S			
					DD				MES		4			PROG	RAM SP	ECIFIC
COs	5				FK	UGRA				(FUS)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		1	2	1	1	1	-	-	1	-	1	1	1	2	2	1

CO2

CO3

CO4

CO5

-

-

-

-

-

-

-

-

-

-

-

-

DS1723	SOCIAL NETWORK ANALYTICS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVE	S				
🛠 To ur	derstand the concept of semantic web and related applications.				
 To lease 	arn knowledge representation using ontology.				
🛠 To de	tect communities in social networks.				
🛠 To ur	derstand human behaviour in social web and related communities.				
 To lease 	arn visualization of social networks.				
UNIT I	INTRODUCTION				9
Introduction	to Semantic Web: Limitations of current Web - Development of Semantic	c W	'eb -		
Emergence	of the Social Web - Social Network analysis: Statistical properties o	of s	ocial		
Networks-De	finitions-Data Descriptions-Static properties- Dynamic properties-Develop	me	nt of		
Social Netwo	rk Analysis - Key concepts and measures in network analysis - Electronic	sou	irces		;01
for network	analysis: Electronic discussion networks, Blogs and online communities	- V	Veb-		
based netwo	rks - Applications of Social Network Analysis.				
UNIT II	MODELLING, AGGREGATING AND KNOWLEDGE REPRESENTATION	ON			9
Ontology an	d their role in the Semantic Web: Ontology-based knowledge Represer	ntati	on -		
Ontology lan	guages for the Semantic Web: Resource Description Framework - Web C	Onto	logy		
Language -	Modelling and aggregating social network data: State-of-the-art in netwo	ork	data		• ~ ~
representatio	n - Ontological representation of social individuals - Ontological represent	tatio	on of		,02
social relation	onships - Aggregating and reasoning with social network data - Ad	dvai	nced		
representatio	ns.				
UNIT III	EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWO	ORI	ĸs		9
Extracting ev	olution of Web Community from a Series of Web Archive - Detecting com	mur	nities		
in social net	vorks - Definition of community - Evaluating communities - Methods for cor	mm	unity		
detection an	d mining - Applications of community mining algorithms - Tools for d	lete	cting	C	;03
communities	social network infrastructures - Decentralized online social networks	- N	/lulti-		
Relational ch	aracterization of dynamic social network communities.				
UNIT IV	PREDICTING HUMAN BEHAVIOUR AND PRIVACY ISSUES				9
Understandi	ng and predicting human behaviour for social communities - Use	er	data		
managemen	- Inference and Distribution - Enabling new human experiences - Reality	min	ing -		
Context - Av	vareness - Privacy in online social networks - Trust in online environment	t - T	Frust		۰ ۰ ۸
models base	ed on subjective logic - Trust network analysis - Trust transitivity an	nalys	sis -		,04
Combining tr	ust and reputation - Trust derivation based on trust comparisons - Attack s	pec	trum		
and counterr	neasures.				1
UNIT V	VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS				9
Graph theor	y - Centrality - Clustering - Node-Edge Diagrams - Matrix represen	ntati	on -		
Visualizing	online social networks, Visualizing social networks with matri	x-ba	ased		
representatio	ons - Matrix and Node-Link Diagrams - Hybrid representations - Applic	atic	ns -		
Cover netwo	rks - Community welfare - Collaboration networks - Co-Citation networks-F	Ran	dom	C	;05
Walk based	Proximity Measures -Clustering with random walk based measures-Algorit	thm	s for		
Computing	Personalized PageRank and Sim Rank –Application-Computer Vision	-	Text		
Computing					
Analysis -Co	llaborative Filtering - Combating Web Spam.				

TEXT	BO	oks														
1.	Pe	ter M	lika, "	Socia	l Netv	vorks	and tl	ne Se	manti	c Wel	b", Firs	t Editio	on, Spr	inger 20	07.	
2.	Во	rko	Furht,	, "Ha	ndboo	ok of	Soci	al Ne	etwork	с Тес	hnolog	gies a	nd Ap	plication	s", 1st	Edition,
	Sp	ringe	er, 201	10.												
3.	Ch	aru (C. Agg	garwa	l, "So	cial N	etwor	k Data	a Ana	lytics'	', First	Editio	n, Sprii	nger 201	1.	
REFE	REN		BOO	٢S												
1.	Da	ivid (Cama	cho,A	ngel,	Gem	a Be	llo ar	nd An	tonio,	"The I	=our E	Dimens	ions of	Social N	letwork
	An	alysi	s: An	Overv	view c	of Res	earch	Meth	ods, i	Applic	ations	, and S	Softwa	re Tools"	' Feb 20	20.
2.	Gι	lando	ong X	u ,Ya	nchur	n Zhai	ng an	d Lin	Li, "V	Veb N	lining a	and So	ocial N	etworkin	g – Tecł	nniques
	an	d app	olicatio	ons",	First E	Editior	n, Spr	inger,	2011							
3.	Jo	hn G	. Bres	slin, A	lexan	der Pa	assar	it and	Stefa	n De	cker, " ⁻	The So	ocial S	emantic	Web", S	pringer,
	20	09.														
COUR	RSE	OUT	СОМ	ES												
Upon	con	nplet	ion o	f the	cours	se, sti	udent	s will	be a	ble to)					
CO1	De	velop	o sem	antic	web r	elated	d appl	icatio	ns.							
CO2	Re	prese	ent kr	owled	dge us	sing o	ntolo	gy.								
CO3	De	etect of	comm	unitie	s in s	ocial ı	netwo	rks.								
CO4	Pre	edict	huma	n beł	navior	in so	cial w	eb an	d rela	ted co	ommur	nities.				
CO5	Vis	sualiz	e soc	ial ne	twork	S.										
					М	APPI	NG O	F CO	s WI1	н РС)s AND	PSO	S			
										(DO-	、			PROG	RAM SP	ECIFIC
COs	5				PR	JGRA		JICO		(PUS	5) 		-	OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2	2	2	2	-	-	-	-	2	2	2	2	2	2
CO2		3	3	3	3	2	-	-	-	-	2	2	2	2	3	2
CO3		3	3	3	3	2	-	-	-	-	2	2	2	2	3	2
CO4		2	2	3	3	2	-	-	-	-	2	2	2	2	3	2

CO5

-

-

-

-

	1		I		
DS1724	MULTIVARIATE ANALYSIS	L	Τ	Ρ	С
		3	0	0	3
 To give 	e mathematical and statistical background to handle the analysis involving	mu	ltivari	able	e.
 To exp 	lore the joint performance of the variables as well as to determine the	effe	ect of	fea	ich
variable	e in the presence of the others.				
 To inte 	lligently analyze data using appropriate multivariate methods				
Likeliho	ood ratio tests, MANOVA models, Discriminate procedures and Factor	or a	nalys	is a	are
include	d with the objective to handle and understand the concept of e	xplo	ratory	y a	Ind
confirm	atory data analysis				
UNIT I	INTRODUCTION				9
Basic concep	ts on multivariate variable. Multivariate normal distribution, Margir	nal	and		
conditional dis	tribution, Concept of random vector: Its expectation and Variance-Cov	/aria	ance	~	01
matrix. Margin	al and joint distributions. Conditional distributions and Independence of	rand	dom		
vectors. Multin	omial distribution. Sample mean vector and its distribution				
UNIT II	DISTRIBUTION				9
Sample mean	vector and its distribution. Likelihood ratio tests: Tests of hypotheses al	oout	the		
mean vectors	and covariance matrices for multivariate normal populations. Independ	lenc	e of	С	02
sub vectors an	d sphericity test				
UNIT III	MULTIVARIATE ANALYSIS				9
Multivariate ar	alysis of variance (MANOVA) of one and two- way classified data. Mul	tivai	riate		
analysis of cov	variance. Wishart distribution, Hotelling's T2 and Mahalanobis' D2 statist	ics,	Null	С	03
distribution of	Hotelling's T2. Rao's U statistics and its distribution				
UNIT IV	CLASSIFICATION AND DISCRIMINANT PROCEDURES				9
Bayes, minim	ax, and Fisher's criteria for discrimination between two multivariate	noi	rmal		
populations.	Sample discriminant function. Tests associated with discriminant fu	ncti	ons.	~	~1
Probabilities of	f misclassification and their estimation. Discrimination for several mul	tivar	riate		04
normal popula	tions				
UNIT V	PRINCIPAL COMPONENT and FACTOR ANALYSIS				9
Principal comp	onents, sample principal components asymptotic properties. Canonical v	aria	bles		
and canonica	I correlations: definition, estimation, computations. Test for signification	ance	e of		
canonical corre	elations.			С	05
Factor analysi	s: Orthogonal factor model, factor loadings, estimation of factor loading	s, fa	ctor		
scores. Applic	ations				
	ΤΟΤΑΙ	.: 45	5 PER	RIO	DS
TEXT BOOKS					
1. Anders	on, T.W. 2009. An Introduction to Multivariate Statistical Analysis, 3rd Ed	ition	, Johi	n	
Wiley.					
2. Everitt	B, Hothorn T, 2011. An Introduction to Applied Multivariate Analysis with	R, S	pring	er.	
3. Barry J	. Babin, Hair, Rolph E Anderson, and William C. Blac, 2013, Multivariate	Dat	a Ana	alys	sis,
Pearso	n New International Edition				
REFERENCE	BOOKS				
1. Giri N	C. 1977. Multivariate Statistical Inference. Academic Press.				
2. Chatfie	Id. C. and Collins. A.J. 1982. Introduction to Multivariate analysis. Prentic	e Ha	all		
3. Srivast	ava. M.S. and Khatri. C.G. 1979. An Introduction to Multivariate Statistics	. No	rth Ho	olla	nd

COUR	RSE	OUT	СОМ	ES												
Upon	cor	nplet	tion o	f the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	De	escrib	e pro	pertie	s of m	nultiva	riate	distrib	oution	s sucl	n as m	ultivari	ate no	rmal.		
CO2	Do) Like	lihood	d ratio	tests	on m	ean v	ector	s and	cova	riance	matric	es, un	derstand	and inte	erpret
	the	e com	nputat	ions d	of the	critica	al valu	es as	socia	ted wi	th thes	se test	S			•
CO3	Do	o Tes	ting of	f vari	ous h	vpoth	eses	for mu	ultivar	iate a	nalysis	s of var	iance	(MANOV	A) mode	els
CO4	Dis	scrim	inate	betwe	en ar	oups	and c	lassif	v new	obse	rvatior	ns usin	a vario	us discri	iminate	
	pro	ocedu	ures		5				,				5			
CO5		se nrii	ncinal	comr	onen	t ana	lvsis e	offectiv	velv fo	or dat	a explo	oration	and d	ata dime	nsion rea	duction
			tor or				for o	volore								
	US	se rac	torar	lalysis	seneo	suvery	TOT E	xpiora	atory a			atory d	ala ana	alysis.		
					Μ	APPI	NG O	F CO	s WI	TH PC)s AN[D PSO	S			
										(DO-				PROG	RAM SP	ECIFIC
COs	5				PR	UGRA				(POs	5)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1		3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO2	2	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2
CO3	5	3	3	2	1	2	-	-	1	-	-	2	2	3	2	2

-

-

-

-

-

-

CO4

CO5

-

-

MG17	25 ENTREPRENEURSHIP		Т	Ρ	С
		3	0	0	3
OBJE	CTIVES				
*	To learn about how to establish a company				
*	To know how to find financial resources				
*	To learn the survival skills in accounting and financial management				
*	To know the fundamentals of finance and marketing				
*	To know about intellectual properties and prepare patents				
	HOW TO ESTABLISH THE COMPANY				ç
The I	ounder and Team –Legal Procedure –Executive Summary –Manage	ment	and		
Organ	zation – Product/Service – Business Plan –Marketing Plan –Operating a	nd Co	ontrol	C	:01
Syster	ns –Micro and Mac ro Environmental Fa ctors – Growth Plan –Financial Plan				
UNIT	HOW TO FIND FINANCIAL RESOURCES				Ģ
Debt a	nd Equity: Stock or Loan -Partnership -Venture Capital/Angel Money -Bar	ik Loa	ans –		
Resea	ch Funds: Small Business Innovation Research Programs –Successful Propo	sal W	riting	C	;02
-Succ	essful Proposal Presentation				-
UNIT	I SURVIVAL SKILLS IN ACCOUNTING AND FINANCIAL MANAGE	MENT	1	-	9
Accou	nting Management –Sales and Payroll: Daily Accounting –Financial Sta	temer	nts –		
Dema	nd, Supply, and Market Equilibrium –Break-even Analysis –Tax reduction con	sidera	tions	C	:03
- Cash	Flow Analysis				
UNIT	V FUNDAMENTALS OF FINANCE AND MARKETING				Ş
Key F	nancial Ratios –Financial forecasting –Time Value of Money –Short-term F	inanci	ing –		
Invest	nent Decisions – Marketing Research: The Five P's of Marketing Researc	ר – T	arget	C	:04
Marke	ing – Marketing Research Examples, Portfolio Model, Marketing Mix Four P'	s: Pro	duct,		
Price,	Place, Promotion				
UNIT	/ INTELLECTUAL PROPERTIES			-	9
Intelle	tual Properties – Why is Intellectual Properties important – Patent preparation	on –P	atent	c	:05
infring	ement (Law suits)				
	тот	AL : 4	5 PE	RIC)DS
TEXT	BOOKS				
1.	Kenji Uchino, "Entrepreneurship for Engineers", CRC Press, 2010 Second bo	ok			
REFE	RENCE BOOKS				
1.	Paul Swamidass, "Engineering Entrepreneurship from Idea to Business	Plan",	Car	nbri	dge
	University Press, 2016.				
2.	Hisrich, "Entrepreneurship", Tata McGraw Hill, 9th Edition, 2014				
COUR	SE OUTCOMES				
Upon	completion of the course, students will be able to				
CO1	Know how to establish a company				
CO2	Understand how to find financial resources				
CO3	Determine the survival skills in accounting and financial management				
CO4	Understand the fundamentals of finance and marketing				
005	Know about intellectual properties and patent preparation				

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)				
CO1	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3			
CO1	-	-	-	1	-	1	1	1	-	1	1	1	2	2	1			
CO2	-	-	-	1	-	1	1	1	-	1	1	1	2	2	1			
CO3	-	-	-	1	-	1	1	1	-	1	1	1	2	2	1			
CO4	-	-	-	1	-	1	1	1	-	1	1	1	2	2	1			
CO5	-	-	-	1	-	1	1	1	-	1	1	1	2	2	1			

SEMESTER VIII PROFESSIONAL ELECTIVE – V

DS1811	DATA MINING AND INFORMATION SECURITY	L	Т	Р	С
201011		3	0	0	3
OBJECTIVES		1	1 1		
 To under 	erstand data pre-processing and data visualization techniques.				
 To stud 	y algorithms in pattern mining.				
 To under 	erstand and apply various classification and clustering techniques using	tools	6.		
 To stud 	y advanced concepts in Information security and Risk management.				
 To under 	erstand and apply security technologies.				
UNIT I	DATA MINING – INTRODUCTION				9
Introduction to	Data Mining Systems – Knowledge Discovery Process – Data	ı Mi	ining		
Techniques- Is	sues - applications- Data Objects and attribute types, Statistical desc	riptic	on of	C	01
data, Data Vi	sualization, Data similarity and dissimilarity measures, Data Prepro	ces	sing:	C	01
Cleaning, Integ	ration, Reduction, Transformation and discretization.				
UNIT II	PATTERN MINING				9
Mining Freque	nt Patterns, Associations, and Correlations: Basic Concepts and M	Neth	ods-		
Frequent Item	set Mining Methods-Advanced Pattern Mining: Pattern Mining in M	lultile	evel,		
Multidimension	al Space-Constraint-Based Frequent Pattern Mining-Mining High-Dim	ensi	ional	С	02
Data and Colo	ssal Patterns-Mining Compressed or Approximate Patterns-Pattern Ex	plora	ation		
and Application					r –
UNIT III	CLASSIFICATION AND CLUSTERING			1	9
Basic concep	s-Decision Tree Induction - Bayes Classification Methods- Rule	e Ba	ased		
Classification	 Model Evaluation and Selection-Techniques to Improve Clas 	sifica	ation		
Accuracy-Adva	nced methods: Bayesian Belief Networks-Classification by Back Propa	igati	on –		
Support Vecto	r machines — Lazy Learners - Clustering Techniques – Cluster	anal	ysis-	С	03
Partitioning Me	thods - Hierarchical Methods - Density Based Methods - Grid Based M	etho	ds –		
Evaluation of	clustering – Clustering high dimensional data- Clustering Graph and	Net	work		
					0
UNIT IV	INFORMATION SECURITY: ADVANCED CONCEPTS	nt:	Dick		9
Identification. F	tisk Assessment. Risk control strategies-selecting a risk control strategy		LISK	С	04
	SECURITY TECHNOLOGY AND IMPLEMENTATION	-		1	9
Intrusion detec	tion and prevention systems-Honeypots and honeynets-Scanning and	ana	lvsis		
tools-Biometric	access control-Information security project management-Technical as	spec	ts of	С	05
implementation	-information security maintenance.	1			
	ΤΟΤΑΙ	.:4	5 PE	RIO	DS
TEXT BOOKS					
1. Jiawei	Han and Micheline Kamber, "Data Mining Concepts and Tecl	nniqu	Jes".	Tł	nird
Edition,	Elsevier, 2012.		,		
2. Michae	e Whitman, Herbert J Mattord, "Principles of Information security", Fourth	n Ed	ition,2	201	1
REFERENCE	BOOKS				
1. Charu (Aggarwal Jiawei Han , "Frequent Pattern Mining" Springer 2014				
2 Malcoln	W. Harkins, "Managing Risk and Information Security" 2016				

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Apply suitable pre-processing and visualization techniques for data analysis	

CO2 Apply frequent pattern and association rule mining techniques for data analysis

CO3 Apply appropriate classification and clustering techniques for data analysisCO4 Apply concepts in Information security and Risk management.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	-	-	-	1	3	2	2	3	2
CO2	3	3	3	3	3	2	-	-	-	1	3	2	2	3	2
CO3	3	3	3	3	3	2	-	-	-	1	3	2	2	3	2
CO4	3	3	3	3	3	2	-	-	-	1	3	2	2	3	2
CO5	3	3	3	3	3	2	-	-	-	1	3	2	2	3	2

DS1812	SPEECH PROCESSING AND SYNTHESIS	L	Т	P C
		3	0	0 3
OBJECTIVES				
 To und 	erstand the mathematical foundations needed for speech processing			
 To und 	erstand the basic concepts and algorithms of speech processing and syn	thes	is	
 To far 	niliarize the students with the various speech signal representatio	n, c	oding	g and
recogn	tion techniques			
 To app 	reciate the use of speech processing in current technologies and to expo	ose tł	ne sti	udents
to real-	world applications of speech processing			
UNIT I	FUNDAMENTALS OF SPEECH PROCESSING			9
Introduction –	Spoken Language Structure – Phonetics and Phonology – Syllables and	d Wo	ords	
 Svntax and \$ 	Semantics – Probability. Statistics and Information Theory – Probability	Гheo	rv –	CO1
Estimation The	eory – Significance Testing – Information Theory.		,	
UNIT II	SPEECH SIGNAL REPRESENTATIONS AND CODING			9
Overview of D	iaital Signal Processing – Speech Signal Representations – Short time	Fοι	Jrier	
Analvsis – Ao	coustic Model of Speech Production – Linear Predictive Coding –	Cep	stral	CO2
Processina – F	Formant Frequencies – The Role of Pitch – Speech Coding – LPC Coder.			
	SPEECH RECOGNITION			9
Hidden Marko	/ Models – Definition – Continuous and Discontinuous HMMs – Practica	al Iss	ues	
 Limitations. 	Acoustic Modeling - Variability in the Speech Signal - Extracting Fe	ature	es –	CO3
Phonetic Mode	eling – Adaptive Techniques – Confidence Measures – Other Techniques			
UNIT IV	TEXT ANALYSIS			9
Lexicon – Do	, ocument Structure Detection – Text Normalization – Linguistic An	alysi	s –	
Homograph Di	sambiguation – Morphological Analysis – Letter-to-sound Conversion –	Pros	ody	
- Generation	schematic – Speaking Style – Symbolic Prosody – Duration Assignmen	t – F	vitch	CO4
Generation				
UNIT V	SPEECH SYNTHESIS			9
Attributes – I	Formant Speech Synthesis – Concatenative Speech Synthesis – I	Pros	odic	
Modification o	Speech – Source-filter Models for Prosody Modification – Evaluation	of ⁻	TTS	CO5
Systems.				
	TOTAL	. : 45	5 PEF	RIODS
REFERENCE	BOOKS			
1. James	Whitaker, John Liu, and Uday Kamath, Deep learning for NLF	' an	nd S	peech
Recogi	nition,Springer,2019.			
2. Joseph	Mariani, —Language and Speech Processingll, Wiley, 2009.			
3. Lawrer	ce Rabiner and Biing-Hwang Juang, —Fundamentals of Speech Recog	nitior	า∥, Pr	rentice
Hall Sig	nal Processing Series, 1993.			
4. Sadaoł	ki Furui, —Digital Speech Processing: Synthesis, and Recognition, S	Seco	nd E	dition,
(Signal	Processing and Communications)II, Marcel Dekker, 2000.			
5. Thoma	s F.Quatieri, —Discrete-Time Speech Signal Processingll, Pearson Educ	atior	ı, 200)2.
6. Xuedor	ng Huang, Alex Acero, Hsiao-Wuen Hon, —Spoken Language Processi	ng –	A gı	uide to
Theorv	Algorithm and System Developmentll, Prentice Hall PTR, 2001.			

COUF	RSE	ουτ	СОМ	ES												
Upon	con	nplet	ion o	f the	cour	se, st	udent	ts will	l be a	ble to)					
CO1	Ide	entify	the	variou	is ten	npora	l, spe	ctral	and c	epstr	al feat	ures r	equire	d for ide	entifying	speech
	uni	its – I	phone	eme, s	syllab	le and	l word	1								
CO2	De	term	ine ar	nd app	oly Me	el-freq	luenc	y ceps	stral c	oeffic	ients fo	or proc	essing	all types	s of signa	als
CO3	Jus	stify t	he us	e of f	ormar	nt and	conc	atena	tive a	pproa	ches t	o spee	ch syn	thesis		
CO4	Ide	entify	the a	pt app	oroac	h of s	beech	synth	nesis	deper	nding a	n the l	angua	ge to be	process	ed
CO5	De	term	ine th	e vari	ous e	ncodi	ng teo	chniqu	les fo	r repr	esentir	ng spe	ech.			
					Μ	APPI	NG O	F CO	s WI1	ГН РС)s AN[D PSO	s			
					DD				MES		•			PROG	RAM SP	ECIFIC
COs	s					UGRA				(FUS)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO2	2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO2 CO3	2	3	3 3	3	2	2	2	-	-	-	2	2	2 2	3 3	3 3	2 2
CO2 CO3 CO4	2 5 4	3 3 3	3 3 3	3 3 3	2 2 2	2 2 2	2 2 2	-	-	-	2 2 2	2 2 2	2 2 2	3 3 3	3 3 3	2 2 2

DS18	13 CYBER SECURITY	L	Τ	Ρ	С
		3	0	0	3
OBJE	CTIVES				
*	Students should be able to understand.				
*	The difference between threat, risk, attack and vulnerability.				
*	How threats materialize into attacks.				
*	Where to find information about threats, vulnerabilities and attacks.				
*	I ypical threats, attacks and exploits and the motivations benind them.				
	I INTRODUCTION TO CYBER SECURITY			T	9
Introd	uction -Computer Security - Inreats -Harm - Vulnerabilities - Controls - Autnenti		ion -		01
Tarne	ting Users - Obtaining User or Website Data - Email Attacks	Alla	auns		
	II SECURITY IN OPERATING SYSTEM & NETWORKS				g
Secur	ity in Operating Systems - Security in the Design of Operating Systems -R	Root	kit -		
Netwo	ork security attack- Threats to Network Communications - Wireless Network Security	ecur	ity -	С	02
Denia	l of Service - Distributed Denial-of-Service.		,		
UNIT	III DEFENCES: SECURITY COUNTERMEASURES				9
Crypt	ography in Network Security - Firewalls - Intrusion Detection and Prevention Sy	/ster	ms -		
Netwo	ork Management - Databases - Security Requirements of Databases - Reliab	ility	and	С	03
Integr	ty - Database Disclosure - Data Mining and Big Data.				<u> </u>
					9
Privad	y Concepts -Privacy Principles and Policies -Authentication and Privacy - Data	Mini	ing -		~ 4
Field	y on the web - Email Security - Privacy impacts of Emerging Technologies - wr	nere	e the		04
					q
Secur	ity Planning - Business Continuity Planning - Handling Incidents - Risk Analysis -	Dea	alina		Ŭ
with D	isaster - Emerging Technologies - The Internet of Things - Economics - Electronic	c Vo	oting		
- Cyb	er Warfare- Cyberspace and the Law - International Laws - Cyber crime - Cyber	Wai	rfare	C	05
and H	ome Land Security.				
	TOTAL	: 45	5 PE	RIO	DS
REFE	RENCE BOOKS				
1.	Charles P. Pfleeger Shari Lawrence Pfleeger Jonathan Margulies, Security in (Con	nputii	ng,	5th
-	Edition, Pearson Education, 2015				
2.	George K.Kostopoulous, Cyber Space and Cyber Security, CRC Press, 2013.		A 1 -		•
3.	Martti Lento, Pekka Neittaanmaki, Cyber Security: Analytics, Technology a	na	Auto	ma	lion
1	Nelson Philling and Enfinder Steuart —Computer Ecrepsics and Investigation	onel		ana	ane
4.	Learning New Delhi 2009	01151	i, Ce	inge	aye
COUF	PSE OUTCOMES				
	completion of the course, students will be able to				
Upon	Describe and understand the basics of the ethical hacking				
Upon CO1	g	hac	kina		
Upon CO1 CO2	Perform the foot printing and scanning - Demonstrate the techniques for system				
Upon CO1 CO2 CO3	Perform the foot printing and scanning - Demonstrate the techniques for system	nao	0		
Upon CO1 CO2 CO3	Perform the foot printing and scanning - Demonstrate the techniques for system Characterize the malware and their attacks and detect and prevent them				
Upon CO1 CO2 CO3 CO4	Perform the foot printing and scanning - Demonstrate the techniques for system Characterize the malware and their attacks and detect and prevent them Determine the signature of different attacks and prevent them				

COs				PR	OGR/	AM O	итсс	MES	(POs	5)			PROG OUTC	RAM SPECIFIC		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	-	2	-	-	1	2	2	-	2	3	2	2	
CO2	3	3	3	-	2	-	-	1	2	2	-	2	3	2	2	
CO3	3	3	3	-	2	-	-	1	2	2	-	2	3	2	2	
CO4	3	3	3	-	2	-	-	1	2	2	-	2	3	2	2	
CO5	3	3	3	-	2	-	-	1	2	2	-	2	3	2	2	

			<u> </u>	
DS181	4	PREDICTIVE ANALYTICS		<u>' C</u>
		3 (0	3
OBJE				
**	I o lear	n, now to develop models to predict categorical and continuous outcomes, u	sing	such
	lechniq	ues as neural networks, logistic regression, support vector machines and , K-	near	est –
*		our classifiers.	to n	nodol
***	selectio	n	le n	louei
*	To advi	n. ce on when and how to use each model		
*	Alsolea	arn how to combine two or more models to improve prediction		
*	To learn	about supervised and unsupervised learning		
	10 10411	LINEAR METHODS FOR REGRESSION AND CLASSIFICATION		o
	ew of a	supervised learning Linear regression models and least squares Multir		
reares	sion Mi	ultiple outputs Subset selection Ridge regression Lasso regression Ling	ar	CO1
Discrin	oinant Δι	aliple outputs, Subset selection, Ruge regression, Lasso regression, Line	ai	COI
		MODEL ASSESMENT AND SELECTION		Q
Bias \	• /ariance	and model complexity. Bias-variance trade off. Optimism of the training er	or	
rate	Fsimate	of In-sample prediction error. Effective number of parameters Bayesi	an	CO2
approa	ach and I	BIC. Cross- validation. Boot strap methods, conditional or expected test error.		002
		ADDITIVE MODELS. TREES AND BOOSTING		9
Gener	alized a	additive models. Regression and classification trees. Boosting method	s-	
expon	ential los	ss and AdaBoost. Numerical Optimization via gradient boosting. Examples	(CO3
Spam	data, Ca	lifornia housing, NewZealand fish, Demographic data)	` I	
	V	NEURAL NETWORKS(NN), SUPPORT VECTOR MACHINES(SVM), AND		9
		K-NEAREST NEIGHBOR		
Fitting	neural	networks, Back propagation, Issues in training NN, SVM for classification	n,	
Repro	ducing k	Kernels, SVM for regression, K-nearest -Neighbour classifiers(Image Sce	ne	CO4
Classif	fication)			
	V	UNSUPERVISED LEARNING AND RANDOM FORESTS		9
Associ	iation rul	es, Cluster analysis, Principal Components, Random forests and analysis.		CO5
		TOTAL : 45	'ERI	ODS
REFE	RENCE	BOOKS		
1.	G.Jame	s,D.Witten,T.Hastie,R.Tibshirani-An introduction to statistical learning with ap	plica	itions
	in R,Sp	ringer,2013.		
2.	E.Alpay	din, Introduction to Machine Learning, Prentice Hall Of India,2010.		
3.	Trevor	Hastie, Robert Tibshirani, Jerome Friedman , The Elements of Statistical Lear	ning-	Data
	Mining,	Inference, and Prediction , Second Edition , Springer Verlag, 2009.		
4.	C.M.Bis	hop –Pattern Recognition and Machine Learning,Springer,2006.		
COUR	SE OUT	COMES		
Upon	complet	ion of the course, students will be able to		
CO1	Develop	simple applications regression and classifications.		
CO2	Design	and implement model assessment and selection.		
CO3	Develop	and implement applications using additive models.		
<u> </u>	1)evelor	applications using neural network and support vector machine		
CO4				
CO4 CO5	Design	applications using cluster and random forest analysis.		

COs				PR	OGR/	AM O	итсс	MES	(POs	5)			PROGI OUTC	GRAM SPECIFIC TCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	3	3	3	-	-	-	2	2	2	3	3	3		
CO2	3	3	3	3	3	3	-	-	-	2	2	2	3	3	3		
CO3	3	3	3	3	3	3	-	-	-	2	2	2	3	3	3		
CO4	3	3	3	3	3	3	-	-	-	2	2	2	3	3	3		
CO5	3	3	3	3	3	3	-	-	-	2	2	2	3	3	3		

DS1815	TATISTICAL COMPUTING		<u>0</u> 2					
OBIECTIVES	3 0		3					
 To understand probability distributions, random number generation and density estimatic analysis the different kind of data To learn Monte Carlo experiments and sampling techniques 								
 To learn statistical analysis on 	data							
 To understand statistical tests 	using tools							
 To understand statistical analy 	sis using graphical and numerical methods							
UNIT I DESCRIPTIVE STAT	ISTICS		9					
Diagrammatic representation of data, measures of central tendency, measures of dispersion, measures of skewness and kurtosis, correlation, inference procedure for correlation coefficient, bivariate correlation, multiple correlations, linear regression and its inference procedure, multiple regression. Probability: Measures of probability, conditional probability, independent event, Bayes' theorem, random variable, discrete and continuous probability distributions, expectation and variance, markov inequality, chebyshev's inequality, central limit theorem.								
UNIT II INFERENTIAL STAT	ISTICS		9					
Sampling & Confidence Interval, Infe Goodness of fit, Test of Independence sample, independent, paired), ANOVA Linear Methods for Regression Ana Householder transformations (QR); reduction using principal component a	rence & Significance. Estimation and Hypothesis Testin e, Permutations and Randomization Test, ttest/z-test (or A, chi-square. Ilysis: multiple regression analysis, orthogonalization to singular value decomposition (SVD); linear dimension analysis (PCA)	, е у п)2					
UNIT III PSEUDO-RANDOM	NUMBERS AND MANTE CARLO INTEGRATION		9					
Pseudo-Random Numbers: Random rejection, transformations, multivariate Monte Carlo Integration: Simulation Carlo hypothesis testing, antithetic v sampling Markov chain Monte Carlo Gibbs sampling; convergence	n number generation, Inverse-transform, acceptance e probability calculations. and Monte Carlo integration, variance reduction, Mon- variables/control variates, importance sampling, stratifie (McMC): Markov chains; Metropolis-Hastings algorithm	e CC d ı;)3					
UNIT IV RESAMPLING METH	IODS, DENSITY ESTIMATION, & NUMERICAL METHO	DS	9					
Resampling Methods: Cross-valida confidence intervals, permutation test Density Estimation: Univariate den estimation Numerical Methods: Root find maximization/minimization; constrain Maximization) algorithm; simplex algo	tion, Bootstrapping, Jackknife resampling, percenti s sity estimation, kernel smoothing, multivariate densi ing; more on numerical integration; numeric ned and unconstrained optimization; EM (Expectation rithm	e y al n)4					
UNIT V INTRODUCTION TO	R PROGRAMMING		9					
History of R programming, starting package, workspace, inspecting vari types, vectors, matrices and arrays, I strings and factors, flow control and lo Using R for statistical analysis: Impor graphs, graphics in R, interactively ac commands for descriptive statistics, of factorization and optimization, statistic	and ending R, R as a scientific calculator, handlin ables, operators and expressions in R, data objects ar ists and data frames, built-in and user-defined functions oops, advanced looping, date and times. ting data files, exporting data, outputting results, exporting data files, exporting data, outputting results, exporting data analysis tasks. lata aggregation, representation of multivariate data, cod cal libraries in R	g d , g R e)5					

REFERENCE BOOKS 1. S.C. Gupta & V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons 2. Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Academic Press 3. Dudewicz, E.J., Mishra, S.N., "Modern Mathematical Statistics", Willy 4. Purohit S. G., Gore S. D., Deshmukh S. K., "Statistics using R, Narosa 5. Rizzo, M. L., "Statistical Computing with R", Boca Raton, FL: Chapman & Hall/CRC Press COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Understand and apply the probability distributions, random number generation and density estimations to perform analysis of various kinds of data CO2 Understand and manipulate data, design and perform simple Monte Carlo experiments, and be able to use resampling methods CO3 Perform statistical analysis on variety of data CO4 Perform appropriate statistical tests using R and visualize the outcome CO5 Discuss the results obtained from their analyses after creating customized graphical and numerical summaries MAPPING OF COs WITH POS AND PSOs **PROGRAM SPECIFIC** PROGRAM OUTCOMES (POs) **OUTCOMES (PSOs)** COs PO6 PO10 PSO2 **PO1** PO2 PO3 PO4 PO5 PO7 PO8 PO9 PO11 PO12 PSO1 PSO3

2

2

2

2

2

2

2

2

2

2

-

-

-

-

-

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

CO1

CO2

CO3

CO4

CO5

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

-

-

-

-

2

2

2

2

2

-

-

-

-

-

-

-

-

-

-

SEMESTER VIII PROFESSIONAL ELECTIVE – VI

DC40	24			-		<u>^</u>			
D9182	21				۲ 0				
		Common for AI-DS & AI-ML	3	0	0	3			
OBJE					.,.				
 To provide an understanding of the central challenges in realizing aspects of human cognition To provide a basis supportion to the provide and use the data of human aspects of human cognition 									
 To provide a basic exposition to the goals and methods of numan cognition. To develop elegrithms that use AL and machine learning elege with human interaction a 									
***		elop algorithms that use Al and machine learning along with human	Inte	ractic	n a	ina			
*		ck to help numans make choices/decisions.		oot fi	adir				
**	along w	with the ovidence that justifies the answers	eleva	ant m	air	igs			
						0			
Unit	otondina	Cognition IDN's Watson Design for Human Cognition Augmented Into	Iliao	n 00		9			
Cogni	standing	Cognition, IBM's Walson, Design for Human Cognition, Augmented inte	nige	ling					
conno	ctionist	models of cognition Bayosian models of cognition a dynamical	evet	iiriy, ome	С	01			
appro	cliumsi ach to co	anition	5950	ems					
						٩			
Cogni	tive Mod	als of memory and language, computational models of enisodic and s	ema	antic		3			
memo	rv mode	ling neverolinguistics		antic	С	02			
UNIT	iii					9			
model	ina the	interaction of language memory and learning Modeling select as	oects	s of					
cognit	ion class	ical models of rationality, symbolic reasoning and decision making	0000	5 01	С	03			
UNIT	IV					9			
Forma	al models	of inductive generalization, causality, categorization and similarity, the	e rol	e of					
analoo	av in pro	blem solving. Cognitive Development Child concept acquisition. Cogni	tion	and					
Artifici	al cogni	tive architectures such as ACT-R, SOAR, OpenCog, CopyCat,	Men	nory	С	04			
Netwo	orks.			-					
UNIT	V	APPLICATION				9			
DeepO	QA Archi	tecture, Unstructured Information Management Architecture (UIMA), St	ructu	ured					
Knowl	edge, Bi	usiness Implications, Building Cognitive Applications, Application of C	Cogn	itive	С	05			
Comp	uting and	I Systems							
		TOTAL	. : 45	5 PEF	RIO	DS			
REFE	RENCE	BOOKS							
1.	Formal	Approaches in Categorization by Emmanuel M. Pothos, Andy J. W	ïlls,	Cam	bric	lge			
	Univers	ity Press,2012.							
2.	Cognitio	on, Brain and Consciousness: Introduction to Cognitive Neuroscience	by	Bern	ard	J.			
	Bears,	Nicole M. Gage, Academic Press,2013.							
3.	Cognitiv	e Computing and Big Data Analytics by Hurwitz, Kaufman, and Bowles,	Wile	ey,20	12.				
4.	The Ca	ambridge Handbook of Computational Psychology by Ron Sun (e	d.),	Cam	bric	lge			
	Univers	ity Press,2008.							
COUR	RSE OUT	COMES							
Upon	complet	ion of the course, students will be able to							
CO1	Underst	and what cognitive computing and it's models							
CO2	Underst	and how it differs from traditional approaches.							
CO3	Plan an	d use the primary tools associated with cognitive computing.							
CO4	Plan an	d execute a project that leverages cognitive computing.							
CO5	Underst	and and develop the business implications of cognitive computing.							

COs		PROGRAM OUTCOMES (POs)											PROG OUTC	PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2		
CO2	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2		
CO3	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2		
CO4	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2		
CO5	3	3	3	2	2	-	-	-	-	2	2	2	3	2	2		

DS1822	PARALLEL COMPUTING L T I	PC
	3 0 0) 3
OBJECTI	/ES	
♦ To	understand the development of parallel and massively parallel systems.	
♦ To	understand the challenges in heterogeneous processing systems.	
♦ To	Use shared programming models for parallel programs.	
♦ To	learn to program heterogeneous systems.	
♦ To	learn to provide effective parallel solutions for GPGPU architectures.	
UNIT I	PARALLEL COMPUTING BASICS	ę
Importanc	e of Parallelism – Processes, Tasks and Threads – Modifications to von-Neumann	
model –	LP - TLP - Parallel Hardware - Flynns Classification - Shared Memory and	CO1
Distribute	Memory Architectures – Cache Coherence – Parallel Software – Performance –	001
Speedup	and Scalability – Massive Parallelism – GPUs – GPGPUs.	
UNIT II	SHARED MEMORY PROGRAMMING WITH OPENMP	ç
OpenMP	Program Structure – OpenMP Clauses and Directives – Scheduling Primitives –	003
Synchroni	zation Primitives – Performance Issues with Caches – Case Study – Tree Search.	
UNIT III	PROGRAMMING GPUS	ę
GPU Arch	itectures – Data Parallelism – CUDA Basics – CUDA Program Structure – Threads,	CO3
Blocks, G	ids – Memory Handling.	
UNIT IV	PROGRAMMING WITH CUDA	ę
Parallel P	atterns – Convolution – Prefix Sum – Sparse matrix – Vector Multiplication – Imaging	C:04
Case Stud	у.	
UNIT V	OTHER GPU PROGRAMMING PLATFORMS	ę
Introductio	n to OpenCL – OpenACC – C++AMP – Thrust – Programming Heterogeneous	COF
Clusters -	CUDA and MPI.	
	TOTAL : 45 PER	IODS
TEXT BO	DKS	
1. Pe	ter Pacheco, "Introduction to Parallel Programming", Morgan Kauffman, 2011.	
2. Da	vid B. Kirk, Wen–mei W. Hwu, "Programming Massively Parallel Processors", Third E	dition
Мс	rgan Kauffman, 2016.	
REFERE	ICE BOOKS	
1. Sh	ane Cook, "CUDA Programming – A Developers Guide To Parallel Computing with G	PUs"
Мо	rgan Kauffman, 2013.	
2. B.	R. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, "Heterogeneous Computing	g with
Op	enCL 2.0", Morgan Kauffman, 2015.	
COURSE	OUTCOMES	
Upon cor	pletion of the course, students will be able to	
CO1 Ide	ntify and Choose the right parallel processing paradigm for a given problem.	
CO2 WI	ite parallel programs using OpenMP	
CO3 De	vise solutions for an application on a heterogeneous multi-core platform.	
CO3 De CO4 Pr	ogram GPUs using CUDA / OpenCL.	
CO3 De CO4 Pro	pgram GPUs using CUDA / OpenCL.	

COs		PROGRAM OUTCOMES (POs)												ROGRAM SPECIFIC DUTCOMES (PSOs)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3					
CO1	3	3	3	2	2	2	-	-	-	2	2	2	3	2	2		
CO2	3	3	3	2	2	2	-	-	-	2	2	2	3	2	2		
CO3	3	3	3	2	2	2	-	-	-	2	2	2	3	2	2		
CO4	3	3	3	2	2	2	-	-	-	2	2	2	3	2	2		
CO5	3	3	3	2	2	2	-	-	-	2	2	2	3	2	2		

DS1823	BIO-INSPIRED OPTIMIZATION TECHNIQUES	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
 To Lea 	rn bio-inspired theorem and algorithms				
 To Und 	lerstand random walk and simulated annealing				
🛠 To Lea	rn genetic algorithm and differential evolution				
🛠 To Lea	rn swarm optimization and ant colony for feature selection				
 To und 	erstand bio-inspired application in image processing				
UNIT I	INTRODUCTION				9
Introduction to	algorithm - Newton ' s method - optimization algorithm - No-Fre	e-Lu	unch		
Theorems - Na	ature-Inspired Mataheuristics -Analysis of Algorithms -Nature Inspires Algorithms	gorit	hms	С	01
-Parameter tur	ning and parameter control.				
UNIT II	RANDOM WALK AND ANEALING				9
Random varia	bles - Isotropic random walks - Levy distribution and flights - Markov	chai	ns -		
step sizes and	d search efficiency - Modality and intermittent search strategy - impor	tanc	e of	_	
randomization	- Eagle strategy-Annealing and Boltzmann Distribution - parameter	ers	-SA	С	02
algorithm - Sto	chastic Tunneling.				
UNIT III	GENETIC ALOGORITHMS AND DIFFERENTIAL EVOLUTION				9
Introduction to	genetic algorithms and - role of genetic operators - choice of parameter	ers -	GA		
varients - sch	ema theorem - convergence analysis - introduction to differential even	oluti	on -	С	O 3
varients - choi	ce of parameters - convergence analysis - implementation.				
UNIT IV	SWARM OPTIMIZATION AND FIREFLY ALGORITHM				9
Swarm intellig	ence - PSO algorithm - accelerated PSO - implementation - conv	erge	ence		
analysis - bina	ry PSO - The Firefly algorithm - algorithm analysis - implementation -	/arie	ents-	С	04
Ant colony opt	imization toward feature selection.				
UNIT V	APPLICATION IN IMAGE PROCESSING				9
Bio-Inspired C	Computation and its Applications in Image Processing: An Overview	- F	ine-		
Tuning Enhar	ced Probabilistic Neural Networks Using Meta-heuristic-driven Optim	zati	on -		
Fine-Tuning D	eep Belief Networks using Cuckoo Search - Improved Weighted Three	sho	lded	c	05
Histogram Equ	alization Algorithm for Digital Image Contrast Enhancement Using Bat A	lgor	ithm	Ŭ	00
- Ground Glas	ss Opacity Nodules Detection and Segmentation using Snake Model	- Mo	obile		
Object Trackin	g Using Cuckoo Search				
	TOTAL	: 45	5 PEF	RIO	DS
TEXT BOOKS					
1. Xin-Sh	e Yang , Jaao Paulo papa, "Bio-Inspired Computing and Applicat	ions	s in	Ima	age
Proces	sing",Elsevier 2016.				
REFERENCE	BOOKS				
1. Eiben,	A.E., Smith, James E, "Introduction to Evolutionary Computing", Springer 2	015	•	_	
2. Helio J	.C. Barbosa, "Ant Colony Optimization - Techniques and Applications", Ir	tech	า 201:	3.	
3. Xin-Sh	e Yang, "Nature Ispired Optimization Algorithm, Elsevier First Edition 2014	ł.	_		
4. Yang	Cui,Xiao,Gandomi,Karamanoglu, "Swarm Intelligence and Bio-Inspire	ed C	Comp	utir	וg",
Elsevie	r First Edition 2013.				

COUF	COURSE OUTCOMES															
Upon	com	plet	ion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Implement and apply bio-inspired algorithms															
CO2	Exp	olain	rando	om wa	alk an	d sim	ulated	d anne	aling							
CO3	Imp	lem	ent ar	nd app	oly ge	netic	algori	thms								
CO4	Exp	olain	swar	m inte	elligen	ice an	d ant	colon	y for f	featur	e seleo	ction				
CO5	5 Apply bio-inspired techniques in image processing															
	MAPPING OF COs WITH POs AND PSOs															
										(DO	、 、			PROG	RAM SP	ECIFIC
COs	5				PR	OGRA		UICC	ME2	(POs	5)			Ουτς	OMES (PSOs)
	1	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	3	2	-	-	-	2	2	2	3	3	2
CO2	2	3	3	3	3	3	2	-	-	-	2	2	2	3	3	2
CO3	3	3	3	3	3	3	2	-	-	-	2	2	2	3	3	2
CO4	L I	3	3	3	3	3	2	-	-	-	2	2	2	3	3	2

-

CO5

-

-

		1	т	P	ſ
031024		۲		г 0	2
		3	0	0	3
	visitiand the basic components of Storage System Environment				
	stand the Storage Area Network Characteristics and Components				
	nine emerging technologies including IP-SAN				
	ider the factors which optimize the information retrieval process:				
 To example 	nine current issues in information retrieval				
	STOPAGE SYSTEMS				٩
Introduction to	Information Storage and Management: Information Storage Evol	utio	n of		3
Storage Techn	plogy and Architecture Data Center Infrastructure Key Challenges in M	lana	aina		
Information In	formation Lifecycle. Storage System Environment: Components of th	ne F	Host		
RAID: Impleme	entation of RAID RAID Array Components RAID Levels RAID Com	no i Inari	son	С	01
RAID Impact	on Disk Performance Hot Spares Intelligent Storage System: Com	none	ents		
Intelligent Stor	age Array	point	,		
	STORAGE NETWORKING TECHNOLOGIES			1	9
Direct-Attached	Storage and Introduction to SCSI: Types of DAS. DAS Bene	fits	and		
Limitations, Di	sk Drive Interfaces, Introduction to Parallel SCSI, SCSI Command	M	odel.		
Storage Area	Networks: Fiber Channel, SAN Evolution, SAN Components, Fiber	Cha	nnel		
Connectivity, F	iber Channel Ports, Fiber Channel Architecture, Zoning, Fiber Chann	el L	ogin	С	02
Types, Fiber (Channel Topologies. Network Attached Storage: Benefits of NAS, N	IAS	File		
I/Components	of NAS, NAS Implementations, NAS-Implementations, NAS File	Sha	aring		
Protocols, NAS	I/O Operations.		•		
UNIT III	ADVANCED STORAGE NETWORKING AND VIRTUALIZATION				9
IP SAN: iSCS	, FCIP. Content-Addressed Storage: Fixed Content and Archives, T	Гуре	s of		
Archives, Feat	ures and Benefits of CAS, CAS Architecture, Object Storage and Ret	triev	al in		
CAS, CAS Exa	mples. Storage Virtualization: Forms of Virtualization, NIA Storage Virtu	aliza	ation	С	03
Taxonomy, Sto	rage Virtualization Configurations, Storage Virtualization Challenges, 7	Гуре	es of		
Storage Virtual	zation.				1
UNIT IV	BUSINESS CONTINUITY			1	9
Introduction to	Business Continuity: Information Availability, BC Terminology, BC I	Plan	ning		
Lifecycle, Failu	re Analysis, Business Impact Analysis, BC Technology Solutions. Bac	kup	and		
Recovery: Bac	kup Purpose, Considerations, Granularity, Recovery Considerations,	Ba	ckup	С	04
Methods and F	rocess, Backup and Restore Operations, Backup Topologies, Backup	in I	NAS		
Environments,	Backup Technologies.				1
	REPLICATION				9
Local Replicat	on: Source and Target, Uses of Local Replicas, Data Consistency	y, L	ocal		
Replication Te	chnologies, Restore and Restart Considerations, Creating Multiple F	rebli	cas,	С	05
Management	Interface. Remote Replication: Modes of Remote Replication	and	Its		
technologies, r		. 4			
		.:4;	D PE	RIO	D2
REFERENCE	SUURS				
1. EMC C	proration, "Information Storage and Management: Storing, Managing,	and	a Pro	tect	ing
	ntormation", vviley, india, 2010				
	TIEV				
2. Marc Fa	Chalding Storage Networks, Tata McCraw Tim, Coborne, 2001.	N /	· · · - ·	., ,	10
2. Marc Fa 3. Robert	Spalding, —Storage Networks: The Complete Reference, Tata	M	cGrav	N H	Hill,

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Select from various storage technologies to suit for required application.
CO2	Apply theories to effectively solve information retrieval problems in real world situations.
CO3	Apply security measures to safeguard storage & farm.
CO4	Analyze QoS on Storage.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	-	-	-	2	2	2	3	2	2
CO2	3	3	3	3	2	2	-	-	-	2	2	2	3	2	2
CO3	3	3	3	3	2	2	-	-	-	2	2	2	3	2	2
CO4	3	3	3	3	2	2	-	-	-	2	2	2	3	2	2
CO5	3	3	3	3	2	2	-	-	-	2	2	2	3	2	2
MG1825	ENGINEERING ECONOMICS	L	Т	Р	С										
-------------------------------	--	--------	----------	-----	------										
		3	0	0	3										
OBJECTIVES	· · · · · · · · · · · · · · · · · · ·														
Acquire	knowledge of economics to facilitate the process of economic decision r	nak	ina												
 To ana 	vze cost/revenue data and carry out make economic analyses in the d	lecis	sion-i	nak	kina										
process	to justify or reject alternatives/projects on an economic basis														
 To obtain 	in professional licensure														
 To func 	tion in the business and management side of professional engineering p	racti	ce												
 Prepare 	engineering and computer science students to write technical reports.	aot	00.												
					٩										
Introduction to	Economics - Flow in an economy I aw of supply and demand Cor		nt of		3										
	conomics - Figure origination of the second supply and demaind, con	inor													
	conomics – Engineering enciency, Economic enciency, Scope of eng	inee	enng	6	01										
economics – E	iement of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportun	iity (JOSI,	C	01										
Break-even an	alysis – v ratio, Elementary economic Analysis – Material selection for	pro	auct												
Design selection	on for a product, Process planning.														
				1	9										
Make or buy	decision, Value engineering – Function, aims, Value engineering pro	cec	lure.												
Interest formul	ae and their applications -Time value of money, Single payment co	mpo	bund												
amount factor,	Single payment present worth factor, Equal payment series sinking fund	d fa	ctor,	С	02										
Equal paymen	t series payment Present worth factor- equal payment series capital r	eco	very												
factor – Uniforr	n gradient series annual equivalent factor, Effective interest rate, Examp	les i	n all												
the methods.					1										
UNIT III	CASH FLOW				9										
Methods of cor	nparison of alternatives – present worth method (Revenue dominated ca	ash	flow												
diagram), Futu	re worth method (Revenue dominated cash flow diagram, cost dominat	ed (cash	C	03										
flow diagram),	Annual equivalent method (Revenue dominated cash flow diagra	m,	cost		05										
dominated cas	h flow diagram), rate of return method, Examples in all the methods.														
UNIT IV	REPLACEMENT AND MAINTENANCE ANALYSIS				9										
Replacement	and Maintenance analysis – Types of maintenance, types of repla	acer	nent												
problem, deter	mination of economic life of an asset, Replacement of an asset with a ne	w a	sset		~										
- capital recov	very with return and concept of challenger and defender, Simple prot	babi	listic	C	04										
model for items	which fail completely.														
UNIT V	DEPRECIATION				9										
Depreciation- I	ntroduction, Straight line method of depreciation, declining balance me	etho	d of												
depreciation-S	um of the years digits method of depreciation, sinking fund me	tho	d of												
depreciation/ A	nnuity method of depreciation, service output method of depreciation-Ev	alua	ation	С	05										
of public altern	atives- introduction. Examples, Inflation adjusted decisions – procedure t	o a	diust												
inflation. Exam	ples on comparison of alternatives and determination of economic life of	ass	, et.												
	TOTAL	: 4	5 PE	RIO	DS										
TEXT BOOKS				_	-										
1 Pravin l	Sumar "Engineering Economy Management" Wiley Publication 2019														
2 R Pann	eerselvam "Engineering Economics" PHI 2013														
KEFERENCE	500K5														
1. Zahid	A. Khan, Arshad N. Siddiquee, Brajesh Kumar, Mustufa H. Abidi,	"P	rincip	les	of										
Engine	ering Economics with Applications", Cambridge, Second Edition, 2018.														
	-														

COUR	RSE	OUT	СОМ	ES												
Upon	con	nplet	ion o	of the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Eva	aluat	e the	econ	omic t	heorie	es, co	st cor	ncepts	s and	pricing	policie	es			
CO2	Un	Understand the market structures and integration concepts														
CO3	Un	derst	tand	the r	neası	ures (of na	tional	inco	me,	the fu	nction	s of b	anks ai	nd conc	epts of
	glo	baliz	ation													
CO4	Pro	ovide	the s	tuder	nts wit	h a ba	asic u	nders	tandir	ng of i	eplace	ement	analysi	s.		
CO5	Un	derst	tand e	ethica	l busiı	ness p	oractio	ces.								
					Μ	APPI	NG O	F CO	s WI	гн рс)s ANI	D PSO	S			
					DD				MES					PROG	RAM SP	ECIFIC
COs	5				PR	OGR/	AM O	итсс	MES	(POs	i)			PROG OUTC	RAM SP OMES (ECIFIC PSOs)
COs	5	PO1	PO2	PO3	PR PO4	OGRA PO5	AM O PO6	UTCC	PO8	(POs	5) PO10	P011	P012	PROG OUTC PSO1	RAM SP OMES (PSO2	ECIFIC PSOs) PSO3
COs CO1	5	PO1	PO2 3	PO3	PR PO4 2	OGR/ P05 -	AM O PO6 -	UTCC P07 -	DMES P08 -	(POs P09 -	PO10	PO11 2	PO12 2	PROG OUTC PSO1 3	RAM SP OMES (PSO2 2	ECIFIC PSOs) PSO3 2
COs	5	PO1 3 3	PO2 3 3	PO3 3 3	PR PO4 2 2	OGR/ P05 -	AM O PO6 - -	UTCC P07 - -	PO8 -	(POs PO9 - -	 PO10 2 2 	PO11 2 2	PO12 2 2	PROG OUTC PSO1 3 3	RAM SP OMES (PSO2 2 2	ECIFIC PSOs) PSO3 2 2
COs CO1 CO2 CO3	5	PO1 3 3 3	PO2 3 3 3	PO3 3 3 3	PR (PO4 2 2 2	P05 - -	AM O PO6 - -	P07 - -	PO8 - -	(POs PO9 - -	 PO10 2 2 2 2 	P011 2 2 2 2	P012 2 2 2	PROG OUTC PSO1 3 3 3	RAM SP OMES (PSO2 2 2 2 2	ECIFIC PSOs) PSO3 2 2 2 2
COs CO1 CO2 CO3 CO4	5	PO1 3 3 3 3 3	PO2 3 3 3 3	PO3 3 3 3 3 3	PR(PO4 2 2 2 2 2	P05 - - -	PO6 - - - -	UTCC P07 - - -	PO8 - - - -	(POs PO9 - - -	 PO10 2 2 2 2 2 2 	P011 2 2 2 2 2	P012 2 2 2 2	PROG OUTC PSO1 3 3 3 3 3	RAM SP OMES (PSO2 2 2 2 2 2 2 2	ECIFIC PSOs) PSO3 2 2 2 2 2 2

OPEN ELECTIVES – I & II

OBT101 INDUSTRIAL BIOTECHNOLOGY	I	L	Т	Ρ	С				
	3	3	0	0	3				
 OBJECTIVE To motivate students to excel in research and to practice the technology. To provide students with a solid understanding of and applications required to solve real life problems. To provide environment that is aware of professional excellence and leader professional bodies 	blogies in the fie Biotechnology students with ship through in	eld of fun an ntera	ⁱ Ind dan aca ctic	dusti nenta ader on w	rial als nic <i>v</i> ith				
UNIT I OVERVIEW OF THE CELL					9				
Cell, structure and properties, prokaryotic and eukaryotic cells, structu function of intracellular organelles; Cell wall, Nucleus, Mitochondria, Golg Endoplasmic reticulum, Peroxisomes and Chloroplast.	ural organizatio ji bodies, Lysos	on a some	nd es,	CC	01				
UNIT II MICROBIAL GROWTH: PURE CULTURE TECHNIQUES					9				
Enrichment culture techniques for isolation of chemoautotrophs, chemoheterotrophs and photosynthetic microorganisms. The definition of growth, mathematical expression of growth, Growth curve, availability of oxygen, culture collection and maintenance of cultures. Media formulation: principles of microbial nutrition, formulation of culture medium, selective media, factors influencing the choice of various carbon and nitrogen sources, vitamins, minerals, precursors and antifoam agents. Importance of pH.									
UNIT III MANAGEMENT OF WASTE					9				
Management of Contaminated land, lake sediments and Solid Waste, Biostimulation, Bioaugmentation, Phytoremediation, Natural attenuation, Ve	Anaerobic dige ermicomposting	estic	n,	CC)3				
UNIT IV BIOREMEDIATION					9				
Definition, constraints and priorities of Bioremediation, Types of bioremed situ bioremediation techniques, Factors affecting bioremediation. Hydrocarbons. Lignocellulosic Compounds.	iation, In-situ ar Bioremediatic	nd E on	x- of	CC)4				
UNIT V BIOENERGY AND BIOMINING					9				
Bio energy: Energy and Biomass Production from wastes, biofuels, bio hy Biomining: Bioleaching, monitoring of pollutants, microbially enhanced oil re cells.	/drogen and bio ecovery, microbi	omas ial fu	ss. Jel	CC	05				
	TOTAL :	: 45	PE	rioi	DS				
TEXT BOOKS									
 Molecular Biology of cell, Alberts. B et al. Developmental Biology, S Inc. 	F Gilbert, Sinau	uer A	\ss(ociat	tes				
2. AVN Swamy, Industrial Pollution Control Engineering, 2006, Galgot	a Publication,								
2. AVN Swamy, Industrial Pollution Control Engineering, 2006, Galgot REFERENCE BOOKS	a Publication,								

COUF	RSE	ουτ	СОМ	ES												
Upon	com	nplet	ion o	f the	cours	se, st	udent	ts will	l be a	ble to)					
CO1	De: Bio	sign, tech	perfo nolog	orm ex y, Eng	(perin ginee	nents, ring a	analy nd rel	/ze ar ated f	nd inte ields.	erpret	data f	or inve	stigating	complex	problem	ıs in
CO2	De	cide	and a	pply a	appro	priate	tools	and t	echni	ques	in biote	echnol	ogical ma	anipulatio	on.	
CO3	Jus	stify s	societ	al, he	alth, s	afety	and I	egal i	ssues							
CO4	Un	derst	tand h	nis res	sponsi	ibilitie	s in b	iotech	nolog	jical e	nginee	ering pi	ractices			
CO5	Un cor	derst ntext	tand t keepi	he ne ing in	ed an view	d imp need	act of for su	ⁱ biote Istaina	echnol able s	logica olutio	l soluti n.	ons on	ı environı	ment and	l societal	
					N	IAPP	ING (OF CO	Ds Wl	TH P	Os AN	D PSC)s			
COs	5				PF	ROGR	AM C	DUTC	OME	S (PO	s)			P S OUTC	ROGRAI SPECIFIC OMES (I	M C PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		1	1	2	1	1	2	2	4	2	1	1	1	2	1	1
CO2	2	2	1	1	2	2	1	2	1	3	4	1	2	1	1	2
CO3	;	3	3	2	1	1	2	4	3	1	2	4	5	1	2	2
CO4	Ļ	3	3	2	4	2	1	1	1	2	1	3	2	1	2	2
CO5	;	2	1	4	5	2	4	3	2	1	2	3	1	1	2	2

	04	BIOSENSORS	L	Т	Ρ	C	
			3	0	0	3	
OBJE	CTIVE			11			
*	Unders	tand protein based biosensors and their enzyme reactivity, stability and the	eir ap	oplica	atio	n	
UNIT	I	PROTEIN BASED BIOSENSORS					
Nano	structure	for enzyme stabilization - Single enzyme nano particles - Nanotubes mic	ropo	orus	C	01	
silica	- Protein	based nanocrystalline Diamond thin film for processing					
UNIT	II	DNA BASED BIOSENSOR			I		
Heavy biose	y metal c nsors	omplexing with DNA and its determination water and food samples - DN	A zy	/mo	C	02	
UNIT	III	ELECTRO CHEMICAL APPLICATION					
Detection in biosensors - Flurorescence - Absorption - Electrochemical. Integration of various CO techniques - Fibre optic biosensors							
UNIT	IV	FABRICATION OF BIOSENSORS					
Techr	niques us	ed for microfabrication - Microfabrication of electrodes - On chip analysis			C	04	
UNIT	V	BIOSENSORS IN RESEARCH					
Nano	scale bio	sensors	. : 4	5 PE	RIC	D	
RFFF	RENCE	D00//0					
		BOOKS					
1.	Biosen	BOOKS sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2	2004	4			
1.	Biosen Nanom	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007	2004	4			
1. 2. 3.	Biosen Nanom Smart I	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.	2004	4			
1. 2. 3. COUI	Biosen Nanom Smart I RSE OUT	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.	2004	4			
1. 2. 3. COUF	Biosen Nanom Smart I RSE OUT	BOOKS sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. COMES tion of the course, students will be able to	2004	4			
1. 2. 3. COUF Upon	Biosen Nanom Smart I RSE OUT comple The st stability	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. TCOMES tion of the course, students will be able to udents will able to understand protein based biosensors and their enzy and their application in protein based nano crystalline thin film processing	2004 zyme	4 e rea	activ	/ity	
1. 2. 3. COUF Upon CO1	Biosen Nanom Smart I RSE OUT comple The stustility The stu in the fu	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. TCOMES tion of the course, students will be able to udents will able to understand protein based biosensors and their enz and their application in protein based nano crystalline thin film processing idents will able to describe DNA based biosensors to study the presence of bod products	zyme	4 e rea eavy	activ	/it	
1. 2. 3. COUF Upon CO1 CO2	Biosen Nanom Smart I RSE OUT comple The stu stability The stu in the fu biosens	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. TCOMES tion of the course, students will be able to udents will able to understand protein based biosensors and their enz and their application in protein based nano crystalline thin film processing idents will able to describe DNA based biosensors to study the presence of bod products udents will able to understand fluorescence, UV-Vis and electrochemical sors	zyme	4 e rea eavy	me	/ity	
1. 2. 3. COUF Upon CO1 CO2 CO3	Biosen Nanom Smart I RSE OUT Comple The stu stability The stu in the fu biosens The stu nanoch	sors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2 aterials for Biosensors, Cs. Kumar, Willey - VCH, 2007 Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006. TCOMES tion of the course, students will be able to udents will able to understand protein based biosensors and their enz and their application in protein based nano crystalline thin film processing idents will able to describe DNA based biosensors to study the presence of bod products udents will able to understand fluorescence, UV-Vis and electrochemical sors udents will able to study about the fabrication of biosensors and its ipanalyzer	zyme app app	4 e rea eavy	activ me ions	ta	

COs				PF	ROGR	RAM C	оитс	OME	S (PO	s)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	1
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	2
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	2
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	2
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	2

OBT105	INTRODUCTION TO NANOSCIENCE AND NANOTECHNOLOGY	L	Т	Ρ	С
		3	0	0	3
OBJECTIVE					
 Unders and na 	tand the principles of processing, manufacturing and characterization of nostructures.	f na	noma	teria	als
UNIT I	BASICS OF NANOTECHNOLOGY				9
Introduction - and size depe energy and su thermal, mech	Time and length scale in structures -Definition of a nanosystem -Dimens ndent phenomena -Surface to volume ratio -Fraction of surface atoms - face stress- surface defects-Effect of nanoscale on various properties - Str anical, magnetic, optical and electronic properties.	sion: Surf ructu	ality ace ıral,	CO	1
UNIT II	DIFFERENT CLASSES OF NANOMATERIALS				9
Classification materials (buck and metal oxide	based on dimensionality-Quantum Dots,Wells and Wires - Carbon base (yballs, nanotubes, grapheme) - Metal based nanomaterials (nanogold, na es) - Nanocomposites-Nanopolymers - Nano ceramics -Biological nanoma	ed n nosi teria	ano Iver Ils.	CO	2
UNIT III	SYNTHESIS OF NANOMATERIALS				9
Chemical Met Synthesis - F Chemical Vap Pyrolysis - DC	hods: Metal Nanocrystals by Reduction -Sol - gel processing - Solvo hotochemical Synthesis - Chemical Vapor Deposition(CVD) - Metal o or Deposition (MOCVD).Physical Methods: Ball Milling - Electrodeposition (RF Magnetron Sputtering - Molecular Beam Epitaxy (MBE).	other Oxid - Sp	mal le - oray	со	3
UNIT IV	CHARACTERIZATION OF NANOSTRUCTURES				9
Introduction, s angle X-ray so analysis (EDA (STM)-Atomic Spectroscopy	tructural characterization, X-ray diffraction (XRD-Powder/Single crystal) attering (SAXS), Scanning Electron Microscopy (SEM) - Energy Dispersiv X)- Transmission Electron Microscope (TEM) - Scanning Tunneling Micro Force Microscopy (AFM), UV-vis spectroscopy (liquid and solid state) - X-ray Photoelectron Spectroscopy (XPS) - Auger Electron spectroscopy (A), Si ve X rosc Rar AES	mall -ray ope nan).	CO	4
UNIT V	APPLICATIONS				9
Solar energy Nanoelectronic in displays and and biosensor	conversion and catalysis - Molecular electronics and printed electr s -Polymers with a special architecture - Liquid crystalline systems - Appl l other devices -Nanomaterials for data storage -Photonics, Plasmonics- C s -Nanomedicine and Nanobiotechnology	onic licati hem	s - ons iical	CO	5
	TOTAL	. : 4	5 PER		DS
TEXT BOOKS					
1. Nano T Geoff S 2. A Text Ltd., 20 3. Nanost	echnology: Basic Science and Emerging Technologies, Mick Wilson, Kam mith Overseas Press (2005) book of Nanoscience and Nanotechnology,Pradeep T., Tata McGrawHill 12. ructured Materials and Nanotechnology Hari Singh Nalwa Academic Press	ali K Edu , 20	annai icatio 02.	garo n P	e., vt.

REFERENCE BOOKS

- 1. Nanotechnology: A gentle introduction to the next Big idea, Mark A.Ratner, Daniel Ratner, Mark Ratne, Prentice Hall P7R:1st Edition (2002)
- 2. Fundamental properties of nanostructed materials Ed D. Fioran, G.Sberveglier, World Scientific 1994
- 3. Nanoscience: Nanotechnologies and Nanophysics, Dupas C., Houdy P., Lahmani M., Springer-Verlag Berlin Heidelberg, 2007

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Demonstrate the understanding of length scales concepts, nanostructures and nanotechnology

CO2 Understand the different classes of nanomaterials.

CO3 Identify the CVD, MOCVD

CO4 Outline the applications of nanotechnology and

CO5 Develop an ability to critically evaluate the promise of a nanotechnology device.

COs				PF	ROGR	RAM C	OUTC	OME	S (PO	s)			PROG OUTC	RAM SP OMES (ECIFIC PSOs)
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	2	1	2	2	4	2	1	1	1	2	1	1
CO2	3	2	1	2	2	1	2	1	3	4	1	2	1	1	2
CO3	1	2	4	3	1	2	4	3	1	2	4	5	1	2	2
CO4	1	2	2	4	2	1	1	1	2	1	3	2	1	2	2
CO5	2	1	3	1	2	4	3	2	1	2	3	1	1	2	1

	INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM L P	Т	(
	3 0	0	
OBJECTIVES			
 To intro 	oduce the fundamentals and components of Geographic Information System		
To prov	vide details of spatial data models.		
To kno	w the details of data input and topology		
To kno	w the knowledge on data management and output processes		
To kno	w the data quality and standards		
UNIT I	FUNDAMENTALS OF GIS		
Introduction to Systems – De People, Metho data- types of	o GIS - Basic spatial concepts - Coordinate Systems - GIS and Information finitions – History of GIS - Components of a GIS – Hardware, Software, Data, ds – Proprietary and open-source Software - Types of data – Spatial, Attribute attributes – scales/ levels of measurements.	С	0 [,]
UNIT II	SPATIAL DATA MODELS		
Database Stru Raster Data S Vector Models	ictures – Relational, Object Oriented – ER diagram - spatial data models – Structures – Raster Data Compression - Vector Data Structures - Raster vs TIN and GRID data models - OGC standards - Data Quality.	C	02
UNIT III	DATA INPUT AND TOPOLOGY		
Scanner - Ra	ster Data Input – Raster Data File Formats – Vector Data Input –Digitiser –		~
Attribute Data	linking – ODBC – GPS - Concept GPS based mapping.		U.
Attribute Data	linking – ODBC – GPS - Concept GPS based mapping.		
Attribute Data UNIT IV Vector Data A - 3D data colle	linking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS nalysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation.	C	0.
Attribute Data UNIT IV Vector Data A - 3D data colle	Inking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS nalysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS	C	0. [04
Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana	Inking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS nalysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies.		
Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana	linking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS nalysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies. TOTAL : 45 PE		
Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana	linking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS malysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies. TOTAL : 45 PE		
Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana TEXT BOOKS 1. Kang - 2nd Ed 2. Ian	Inking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS malysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies. Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Pul ition,2011. Heywood, Sarah Cornelius, Steve Carver,Srinivasa Raju, "An Introduction Systems Pearson Education 2007	C C ERIC Dlish	
Attribute Data Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana TEXT BOOKS 1. Kang - 2nd Ed 2. Ian Geogra	Inking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS malysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies. Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Pul ition,2011. Heywood, Sarah Cornelius, Steve Carver,Srinivasa Raju, "An Intro applical Information Systems, Pearson Education, 2ndEdition,2007.	C C ERIC	
Attribute Data Attribute Data UNIT IV Vector Data A - 3D data colle UNIT V GIS Applicant and fleet mana TEXT BOOKS 1. Kang - 2nd Ed 2. Ian Geogra REFERENCE	Inking – ODBC – GPS - Concept GPS based mapping. DATA ANALYSIS nalysis tools - Data Analysis tools - Network Analysis - Digital Education models ction and utilisation. APPLICATIONS - Natural Resource Management - Engineering - Navigation - Vehicle tracking agement - Marketing and Business applications - Case studies. TOTAL : 45 PE Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Pul ition,2011. Heywood, Sarah Cornelius, Steve Carver,Srinivasa Raju, "An Intro aphical Information Systems, Pearson Education, 2ndEdition,2007. BOOKS	C C C ERIC Dlish	

COURS	SE OUT	СОМ	ES												
Upon c	complet	tion o	f the	cours	se, sti	udent	ts will	l be a	ble to						
CO1	Have	basic	idea a	about	the fu	undam	nental	s of G	SIS.						
CO2	Under	rstand	the ty	ypes o	of data	a moc	dels.								
CO3	Get ki	nowle	dge a	bout o	data ir	nput a	ind to	pology	<i>y</i> .						
CO4	Gain I	knowle	edge	on da	ta qua	ality a	nd sta	andard	ds.						
CO5	Unde	rstand	data	mana	geme	ent fur	nction	s and	data d	output					
				Μ	APPI	NG O	F CO	s WIT	TH PO	s AN[D PSO	S			
00-				PRC	OGRA	MOL	JTCO	MES	(POs)				PROG	RAM SP	
COS	DO1	DO2	DO2	DO4	DOF	DOG	DO7	DOR	BOO	DO10	DO11	DO1 2			DE02
	POI	P02	P03	P04	P05	P06	P07	P08	P09	P010	PUTT	P012	P501	P502	P503
CO1	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1
CO2	2	2	1	1	2	-	1	-	-	-	-	2	2	2	2
CO3	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1
CO4	2	2	1	1	2	-	1	-	-	-	-	2	2	2	1
CO5	2	2	1	1	2	-	1	-	-	-	-	2	2	2	2

3 0 0 5 OBJECTIVES To understand the fundamentals of hospital administration and management. To know the market related research process and its HRM To understand the recruitment and training processes in hospitals To explore various information management systems and relative supportive services. To learn the quality and safety aspects in hospital. UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION Co Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Co VINT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Co Planning- Equipment Planning – Functional Planning Co UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Co Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory – Manpower Planning. Co UNIT II RECRUITMENT AND TRAINING Co Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Leadership grooming and Training, Promotion – Transfer. Co VINT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Co Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO TOTAL : 45 PERIOD <th>OCH101</th> <th>HOSPITAL MANAGEMENT</th> <th>L</th> <th>Т</th> <th>Ρ</th> <th>С</th>	OCH101	HOSPITAL MANAGEMENT	L	Т	Ρ	С						
OBJECTIVES To understand the fundamentals of hospital administration and management. To know the market related research process and its HRM To understand the recruitment and training processes in hospitals To explore various information management systems and relative supportive services. To learn the quality and safety aspects in hospital. UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning - Equipment Planning – Functional Planning UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory – Manpower Planning. UNIT III RECRUITMENT AND TRAINING Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Leadership grooming and Training, Promotion – Transfer. UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Co Food Services - Laundry Services. UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Tiephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS R. C. Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editior 2006. G. D.Kunders, "Hospital S – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS C. Casar A. Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Ner York, 1977. 			3	0	0	3						
To understand the fundamentals of hospital administration and management. To know the market related research process and its HRM To explore various information management systems and relative supportive services. To lear the quality and safety aspects in hospital. <td< td=""><td>OBJECTIVES</td><td></td><td></td><td></td><td></td><td></td></td<>	OBJECTIVES											
 To know the market related research process and its HRM To understand the recruitment and training processes in hospitals To explore various information management systems and relative supportive services. To learn the quality and safety aspects in hospital. UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning- Equipment Planning – Functional Planning UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory – Manpower Planning. UNIT III RECRUITMENT AND TRAINING UNIT III RECRUITMENT AND TRAINING Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Leadership grooming and Training, Promotion – Transfer. UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editior 2006. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Ner York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Marylan	 To und 	erstand the fundamentals of hospital administration and management.										
 To understand the recruitment and training processes in hospitals To explore various information management systems and relative supportive services. To learn the quality and safety aspects in hospital. UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning- Equipment Planning – Functional Planning UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory – Manpower Planning. UNIT II RECRUITMENT AND TRAINING Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Leadership grooming and Training, Promotion – Transfer. UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. G.D. Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Ner York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1985	 To kno 	w the market related research process and its HRM										
To explore various information management systems and relative supportive services. To learn the quality and safety aspects in hospital. INIT I OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning- Equipment Planning – Functional Planning UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory Manpower Planning. UNIT II RECRUITMENT AND TRAINING UNIT III RECRUITMENT AND TRAINING UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Sode Services - Laundry Services. UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 2. G.D.Kunders, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 3. G.D.Kunders, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 3. G.D.Kunders, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 3. G.D.Kunders, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 3. G.D.Kunders, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 4. William A. Reinke "Health Planning FOR Effective Management" - Oxford University Press, 1995 4. William A. Reinke "Health Planning FOR Effective Management" - Oxford University Press, 1995 4.	To und	erstand the recruitment and training processes in hospitals										
In learn the quality and safety aspects in hospital. UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital CO Planning- Equipment Planning – Functional Planning CO UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory CO _ Manpower Planning. CO UNIT II RECRUITMENT AND TRAINING Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Net York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press	 To exp 	lore various information management systems and relative supportive se	rvice	es.								
UNIT 1 OVERVIEW OF HOSPITAL ADMINISTRATION Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning- Equipment Planning – Functional Planning CO UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL CO Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory – Manpower Planning. CO UNIT II RECRUITMENT AND TRAINING CO Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. CO UNIT IV SUPPORTIVE SERVICES CO Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. CO UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL CO Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO 1 R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. Fift Reprint 2007. 2 G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. Fift Reprint 2007. 2 Norman Metzger, "Handbook of Health Care Human Resource		n the quality and safety aspects in hospital.										
Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning - Equipment Planning – Functional Planning UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL [Construction of HRM – Profile of HRD Manager –Human Resource Inventory Manpower Planning. [Constructions of HRM – Profile of HRD Manager –Human Resource Inventory Manpower Planning. [Constructions of HRM – Profile of HRD Manager –Human Resource Inventory Manpower Planning. [Constructions of HRM – Profile of HRD Manager –Human Resource Inventory MIT III RECRUITMENT AND TRAINING [Construction of Training – Leadership grooming and Training, Promotion – Transfer. [Construction of Training – Leadership grooming and Training, Promotion – Transfer. [Construction of Training – Leadership grooming and Training, Promotion – Transfer. [Construction of Services - Laundry Services. [Construction and Supply Department – Pharmacy – Food Services - Laundry Services. [Construction and Supply Department – Pharmacy – Safety Rules. [Construction of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. [Construction and Human Resource Management", PHI – Fourth Edition 2006. [Construction]] 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. [Construction]] REFERENCE BOOKS [Construction]] 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Net York, 1977. [Construction]] 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. [Construct]] 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1985 [Construct]] 4. William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1986 [Construct]]] 5. Balane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for th	UNITI	OVERVIEW OF HOSPITAL ADMINISTRATION				9						
UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory Manpower Planning. Co UNIT III RECRUITMENT AND TRAINING Co Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. Co UNIT IV SUPPORTIVE SERVICES Co Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. Co UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL CO Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editior 2006. Fift Reprint 2007. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. Fift Reprint 2007. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 3. Peter Berman "Health Planning For Effective Management" - Oxford	Distinction be Planning- Equ	tween Hospital and Industry, Challenges in Hospital Administration – ipment Planning – Functional Planning	Hos	spital	C	:01						
Principles of HRM – Functions of HRM – Profile of HRD Manager –Human Resource Inventory CO Manpower Planning. CO UNIT III RECRUITMENT AND TRAINING Co Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. Co UNIT IV SUPPORTIVE SERVICES Co Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. CO UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL CO Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editor 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Net York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard	UNIT II	HUMAN RESOURCE MANAGEMENT IN HOSPITAL				9						
UNIT III RECRUITMENT AND TRAINING Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. Co UNIT IV SUPPORTIVE SERVICES Co Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. Co UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Co Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. Co 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. Fift REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1985 Selane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 218 Contract, "Ceto," Contract, and the pression in Towards a Health Policy for the 218	Principles of H – Manpo	IRM – Functions of HRM – Profile of HRD Manager –Human Resource I wer Planning.	nver	ntory	C	:02						
Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. CO UNIT IV SUPPORTIVE SERVICES Co Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. Co UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Co Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editior 2006. Co Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Ner York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Outrois Silan Academic Press, 1995 4. William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1985 Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, Ner York, 1977. Sourman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990.	UNIT III	RECRUITMENT AND TRAINING				9						
UNIT IV SUPPORTIVE SERVICES Medical Records Department – Central Sterilization and Supply Department – Pharmacy – CO Food Services - Laundry Services. CO UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public CO Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – CO Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1988 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 218 Coster at David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 218 Coster at David, Brunner, "Health Planning For Effective Management" - Oxford University Press.	Different Depa Training – Eva	Different Departments of Hospital, Recruitment, Selection, Training Guidelines – Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer. CO3 INIT IV SUPPORTIVE SERVICES										
Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services. CO UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL CO Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. CO TOTAL : 45 PERIOD TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 4. William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1988 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Oxford University Press, 1988	UNIT IV	IIT IV SUPPORTIVE SERVICES 9										
UNIT V COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – CO Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 4. William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1988 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s	Medical Reco Food Services	rds Department – Central Sterilization and Supply Department – Pha	rma	су –	c	:04						
 Purposes – Planning of Communication, Modes of Communication – Telephone, ISDN, Public Address and Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. TOTAL : 45 PERIOD TEXT BOOKS 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. 2. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. 3. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 4. William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1988 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Content of the plance page 2002. 	UNIT V	COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL				9						
 TOTAL : 45 PERIOD TEXT BOOKS R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Octaver," Eric Oxford Dress Press 2000 	Purposes – Pl Address and F Safety Rules.	anning of Communication, Modes of Communication – Telephone, ISD Piped Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm S	N, P Syste	ublic em –	С	:05						
 TEXT BOOKS R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Editior 2006. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press, 1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Octoor of the David David		ΤΟΤΑΙ	.:4	5 PE	RIC	DS						
 R.C.Goyal, "Hospital Administration and Human Resource Management", PHI – Fourth Edition 2006. G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Octower," Eric Colorades Dress 2002 	TEXT BOOKS											
 G.D.Kunders, "Hospitals – Facilities Planning and Management – TMH, New Delhi – Fift Reprint 2007. REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s 	1. R.C.Goy 2006.	al, "Hospital Administration and Human Resource Management", PHI –	Fou	urth	Edit	ion,						
 REFERENCE BOOKS Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Century", Eric Colveration Press, 2002 	2. G.D.Kun Reprint 2	ders, "Hospitals – Facilities Planning and Management – TMH, New 2007.	w D	elhi	— F	Fifth						
 Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Century" Eric Colveration Press, 2002 	REFERENCE	BOOKS										
 Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd editio Aspen Publication Inc. Rockville, Maryland, USA, 1990. Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s Contum", Eric Colveration Press, 2002 	1. Cesar A York, 19	Caceres and Albert Zara, "The Practice of Clinical Engineering, Acaden 77.	nic F	Press	s, N	lew						
 Peter Berman "Health Sector Reform in Developing Countries" - Harvard University Press, 1995 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s 	2. Norman Aspen P	Metzger, "Handbook of Health Care Human Resources Managemer ublication Inc. Rockville, Maryland, USA, 1990.	nt",	2nd	edi	tion						
 William A. Reinke "Health Planning For Effective Management" - Oxford University Press.1988 Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s 	3. Peter Be	rman "Health Sector Reform in Developing Countries" - Harvard Universi	ty P	ress,	19	95.						
5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21s	4. William A	A. Reinke "Health Planning For Effective Management" - Oxford Univers	ity P	ress	.19	88						
Century, Eric Cairendon Press 2002.	5. Blane, D Century"	avid, Brunner, "Health and SOCIAL Organization: Towards a Health Pol , Eric Calrendon Press 2002.	icy f	or th	e 2	21st						
 Arnold D. Kalcizony & Stephen M. Shortell, "Health Care Management", 6th Editio Cengage Learning, 2011. 	6. Arnold l Cengage	D. Kalcizony & Stephen M. Shortell, "Health Care Manageme e Learning, 2011.	ent",	6 th	Edi	tion						

COUF	COURSE OUTCOMES							
Upon	Upon completion of the course, students will be able to							
CO1	Explain the principles of Hospital administration.							
CO2	Identify the importance of Human resource management.							
CO3	List various marketing research techniques.							
CO4	Identify Information management systems and issues in supporting departments of hospitals							
CO5	Understand safety procedures followed in hospitals							

COs					PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1
CO2	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1
CO3	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1
CO4	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1
CO5	3	3	3	3	2	-	-	-	-	2	2	2	1	1	1

OEC103	BASICS OF EMBEDDED SYSTEMS AND IOT	L	Т	Ρ							
		3	0	0							
OBJECTIVES ↔ Unders ↔ Learn t ↔ Be exp ↔ Learn t	tand the concepts of embedded system design and analysis he architecture and programming of ARM processor osed to the basic concepts of embedded programming he concepts of IoT										
				9							
Complex syst methodologies architecture de	ems and microprocessors– Embedded system design process - - Design flows - Requirement Analysis – Specifications-System analy sign – Quality Assurance techniques–Design example: Model train contr	Des sis oller	sign and	CO							
UNIT II	BASICS OF ARM ARCHITECTURE AND PERIPHERAL INTERFACIN	G		9							
ARM Architecture Versions – ARM Architecture – Instruction Set – Stacks and Subroutines – Features of the LPC 214X Family – Peripherals – The Timer Unit – Pulse Width Modulation Unit – UART – Block Diagram of ARM9 and ARM Cortex M3 MCU											
UNIT III EMBEDDED PROGRAMMING CONCEPTS 9											
Components f compilation te optimization – optimization of	or embedded programs- Models of programs- Assembly, linking and lo echniques- Program level performance analysis – Software perfo Program level energy and power analysis and optimization – Analy program size- Program validation and testing	adin orma sis	ıg – nce and	со							
UNIT IV INTRODUCTION TO IoT 9											
Functional blo domains - Dif sensors - IoT f	cks of an IoT system - Basics of Physical and logical design of IoT - IoT ference between IoT - Passive and active sensors - Different applica ront-end hardware Case Studies – Smart Parking, Air Pollution Monitoring	enat tion: g.	oled s of	со							
UNIT V	COMMUNICATION PROTOCOLS FOR EMBEDDED AND IOT	-		9							
Embedded Ne protocols- RS- Integrated Circ	etworking: Introduction-Serial/Parallel Communication - Serial commu 485 - Synchronous Serial Protocols - Serial Peripheral Interface (SPI) suits (I2C). IoT Infrastructure - 6LowPAN - IPv6 - Wi-Fi, Bluetooth, ZigBee	nica) - I ».	tion nter	СО							
	TOTAL	: 45	5 PEF	۱OD							
TEXT BOOKS1.Marilyn Design II, III, IV 2.2.Arshde University	Wolf, —Computers as Components - Principles of Embedded Com II, Third Edition —Morgan Kaufmann Publisher (An imprint from Elsevier) /) ep Bahga, Vijay Madisetti, "Internet of Things, A Hands-on-Approac sities press Pvt. Ltd., India, 2015.	nputi , 20 h",	ng S 12. (L 1st E	JNIT JNIT							
3. Daniel Sons",	Minoli, "Building the Internet of Things with IPv6 and MIPv6, 1st Edition Inc, USA, 2013	ı, Jo	hn W	/iley							
REFERENCE	BOOKS	<u> </u>									
 a. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", 1st Edition, Wiley & Sons Ltd, UK, 2014 b. Peter Waher, "Learning Internet of Things", 1st Edition, Packt Publishing Ltd, UK, 2015. c. Charles Bell, "Beginning Sensor Networks with Arduino and Raspberry Pi", 1st Edition, A Publishers, USA, 2013. d. Rai Kamal, Internet of Things, Architecture and Design Principles, McGraw-Hill, 2017. 											

COURS		COM	FS													
Upon co	mplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Unde	erstan	d the	Embe	eddec	l Syst	em D	esign	Proce	ess						
CO2	Desc	cribe t	he ar	chitec	ture a	ind pr	ogran	nming	of AF	RM pro	cesso	r				
CO3	Outline the concepts of embedded system programming															
CO4	Explain the basic concepts of IOT															
CO5	Model Networked systems with basic protocols															
	MAPPING OF COs WITH POS AND PSOS															
COs				PR	OGR/		итсс	MES	(POs	5)			PROGI OUTC	RAM SPECIFIC		
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	3	-	2	1	2	-	1	2	2	3	3	2	
CO2	3	3	2	3	-	3	1	2	-	1	2	2	3	3	2	
CO3	3	3	2	3	3	3	1	2	1	1	2	2	3	3	2	

CO4

CO5

-

-

OEE10)1	BASIC CIRCUIT THEORY	L	Ρ	Т	С
			3	0	0	3
OBJE	CTIVES					
*	• To in	troduce electric circuits and its analysis				
*	• To im	part knowledge on solving circuit equations using network theorems				
*	• To in	troduce the phenomenon of resonance in coupled circuits.				
*	• To in	troduce Phasor diagrams and analysis of three phase circuits				
UNIT I		BASIC CIRCUITS ANALYSIS				9
Resisti	ve elem	ents - Resistors in series and parallel circuits; Ohm's Law; Kirchoffs la	ws ·	-	<u> </u>	4
method	ds of ana	alysis-Mesh current and node voltage.			CO	r I
UNIT I	I	NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS				9
Networ	rk redu	ction- voltage and current division, source transformation, star	delta	a		
conver	sion; Ne	etwork theorems- Thevenins and Norton Theorems, Superposition Theo	orem	I,	со	2
Maxim	um powe	er transfer theorem, Reciprocity Theorem, Millman's theorem.				
UNIT I	II	ANALYSIS OF AC CIRCUITS				9
Introdu	iction to	AC circuits- Inductive reactance, Capacitive reactance, Phasor diag	rams	5,		
real po	wer, rea	active power, apparent power, power factor; RL, RC , RLC networks; Ne	twor	k		
reducti	ons- vol	tage and current division, source transformation; Mesh and node ana	lysis	;	со	3
Networ	rk theore	ems- Thevenins and Norton Theorems, Superposition Theorem , Maxi	mun	n		
power	transfer	theorem, Reciprocity Theorem, Millman's theorem.				
UNIT I	V	THREE PHASE CIRCUITS				9
A.C. ci	rcuits –	Average and RMS value, Phasor Diagram, Power, Power Factor and En	ergy	<i>'</i> ;		
Analys	is of thr	ee phase 3-wire and 4-wire circuits with star and delta connected le	oads	5,	~~	
balanc	ed & un	balanced; phasor diagram of voltages and currents; power measureme	ent i	n	CO	4
three p	hase cir	cuits.				
	/	RESONANCE AND COUPLED CIRCUITS				9
Series	and par	allel resonance – frequency response, Quality factor and Bandwidth; Sel	fan	d		
mutual	inducta	nce; Coefficient of coupling; Tuned circuits – Single tuned circuits.			CO	5
		TOTAL	: 45	5 PE	rio	DS
TEXT	BOOKS					
1.	William	H. Havt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Cir	cuits	s An	alvs	is".
	McGrav	v Hill publishers, edition, New Delhi, 2013.			,	,
2.	Charles	K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric C	Circu	its",S	Seco	ond
	Edition,	McGraw Hill, 2013.				
3.	Allan H	. Robbins, Wilhelm C. Miller, "Circuit Analysis Theory and Practice", Cen	gage	e Lea	arnir	ıg
	India, 2	013.	-			

REFERENCE BOOKS

- 1. Chakrabarti A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 2. Jegatheesan, R., "Analysis of Electric Circuits," McGraw Hill, 2015.
- Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, McGraw- Hill, New Delhi, 2010.
- 4. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 2015.
- 5. Mahadevan, K., Chitra, C., "Electric Circuits Analysis," Prentice-Hall of India Pvt Ltd., New Delhi, 2015.
- 6. Richard C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 7th Edition, John Wiley & Sons, Inc. 2015.
- 7. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis",McGraw Hill, 2015.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Ability to introduce electric circuits and its analysis
CO2	Ability to impart knowledge on solving circuit equations using network theorems
CO3	Ability to introduce the phenomenon of resonance in coupled circuits.
CO4	Ability to introduce Phasor diagrams and analysis of three phase circuits
CO5	Ability to impart knowledge on resonance and coupled circuits

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3

OEF	E103	INTRODUCTION TO RENEWABLE ENERGY SYSTEMS	L	Р	т	С						
			3	0	0	3						
			U	v	Ŭ	–						
		as stand along and grid connected renewable opergy systems										
*	Docian	of power convertors for renewable energy applications										
**		or power converters for renewable energy applications.										
*		ectrical generators and solar energy systems.										
	Power					0						
						9						
Enviro	nmental	aspects of electric energy conversion: impacts of renewable el	herg	У								
genera	generation on environment (cost-GHG Emission) - Qualitative study of different renewable											
hereigy resources. Solar, wind, ocean, biomass, ruer ceil, riydrogen energy systems and												
	Contrained the sector conversion											
Refere	ence theo	bry fundamentals-principle of operation and analysis: IG and PMSG			CC)2						
UNIT I	II	POWER CONVERTERS				9						
Solar:	Block di	agram of solar photo voltaic system -Principle of operation: line commu	tate	d								
conver	rters (inv	ersion-mode) - Boost and buck-boost converters- selection of inverter, ba	atter	У	CC	13						
sizing,	array siz	zing Wind: Three phase AC voltage controllers										
UNIT IV ANALYSIS OF WIND AND PV SYSTEMS												
Standa	alone op	eration of fixed and variability speed wind energy conversion systems	s an	d								
solar s	system-0	Grid connection Issues -Grid integrated PMSG, SCIG Based WECS	gri	d	CC)4						
Integra	ated sola	r system										
	V	HYBRID RENEWABLE ENERGY SYSTEMS				9						
Need	for Hybr	id Systems- Range and type of Hybrid systems- Case studies of Wir	d-P	V	<u> </u>	15						
Maxim	um Pow	er Point Tracking (MPPT).				5						
		TOTAL	: 45	5 PE	RIC	DS						
TEXT	BOOKS											
1.	S. N. BI	nadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford Universi	ty P	ress	, 20	05.						
2.	B.H.Kha	an, "Non-conventional Energy Sources", Tata McGraw-hill Publishing	Com	npan	ny, N	lew						
	Delhi, 2	017.										
REFE	RENCE	BOOKS										
1.	Muham	mad H. Rashid, "Power Electronics Hand Book", Third Editior	n, E	Butte	erwo	rth-						
	Heinem	ann, 2015.										
2.	Ion Bolo	dea, "Variability Speed Generators", Second Edition, CRC Press, 2015.										
3.	Rai. G.I	D, "Non- conventional Energy Sources", Khanna Publishers, 2004.										
4.	4. Gray, L. Johnson, "Wind Energy Systems", Prentice Hall, 2006.											
5.	Andrzej India Pv	M. Trzynnadlowski, "Introduction to Modern Power Electronics", Thiro /t. Ltd, 2016.	l Ed	litior	1, W	iley						

COURS	SE OUTCOMES										
Upon completion of the course, students will be able to											
CO1	Ability to understand and analyze power system operation, stability, control and protection.										
CO2	Ability to handle the engineering aspects of electrical energy generation and utilization.										
CO3	Ability to understand the stand alone and grid connected renewable energy systems.										
CO4	Ability to design of power converters for renewable energy applications.										
CO5	Ability to acquire knowledge on wind electrical generators and solar energy systems.										

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	1
CO2	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3
CO5	3	3	3	3	3	3	2	3	3	1	2	3	3	3	3

OEI102	ROBOTICS	L	Т	Ρ	С					
		3	0	0	3					
OBJECTIVE										
 To und 	erstand the functions of the basic components of a Robot.									
 To stud 	ly the use of various types of End of Effectors and Sensors									
 To impa 	art knowledge in Robot Kinematics and Programming									
 To lear 	n Robot safety issues and economics.									
UNITI	FUNDAMENTALSOF ROBOT				9					
Robot - Defir Classification- Robot Parts ar	nition - Robot Anatomy - Coordinate Systems, Work Envelope Type Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay nd their Functions-Need for Robots-Different Applications.	es a / Lo	and ad-	CC)1					
UNIT II ROBOT DRIVE SYSTEMS ANDEND EFFECTORS										
Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.										
UNIT III	SENSORS AND MACHINEVISION				9					
Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors, binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data- Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications- Inspection, Identification, Visual Serving and										
	ROBOT KINEMATICS AND ROBOTPROGRAMMING				9					
Forward Kiner Kinematics of Degrees of fre Trajectory Ger Programming, Commands, E	matics, Inverse Kinematics and Difference; Forward Kinematics and F manipulators with Two, Three Degrees of Freedom (in 2 Dimension eedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dyn nerator, Manipulator Mechanism Design-Derivations and problems. Lead to Robot programming Languages-VAL Programming-Motion Commands, and Effector commands and simple Programs.	Reve), F nam thro Ser	erse our ics, ugh isor	CC)4					
UNIT V	IMPLEMENTATION ANDROBOTECONOMICS				9					
RGV, AGV; Ir Robot Operatio	nplementation of Robots in Industries-Various Steps; Safety Considerations - Economic Analysis of Robots.	ons	for	CC)5					
TOTAL : 45 PERIC										
TEXT BOOKS										
1. Klafter Prentic 2. Groove	R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integra e Hall, 2003. er M.P., "Industrial Robotics -Technology Programming and Applicati	ated ions	Арр ", М	road IcGi	ch", raw					
Hill,2001.										

REFE	REFERENCE BOOKS																
1.	Cra	aig J.	J., "Ir	ntrodu	ction	to Ro	botics	Mecl	hanics	s and	Contro	ol", Pea	arson Edu	ucation,2	008.		
2.	De	b S.F	R., "R	obotic	s Tec	hnolo	gy an	d Fle	xible /	Auton	nation"	Tata N	/IcGraw I	Hill Book	Co.,199	4.	
3.	Ko	ren Y	′., "Ro	obotic	s for E	Engine	eers",	Mc G	Graw H	Hill Bo	ok Co	.,1992.					
4.	Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.																
5.	Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.																
6.	. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.																
7.	 Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd.,1991. 																
COUR	COURSE OUTCOMES																
Upon	Upon completion of the course, students will be able to																
CO1	01 Understand the functions of the basic components of a Robot.																
CO2	2 Study the use of various types of End of Effectors and Sensors																
CO3	Understand Sensors and Machine Vision of Robot																
CO4	Un	derst	tand F	Robot	Kiner	natics	and	Robo	t Prog	Iramn	ning						
CO5	Un	derst	and t	he Im	pleme	entatio	on of F	Robot	s in Ir	ndustr	ies						
					Ν	MAPP	ING (OF CO	Os W	TH P	Os AN	D PSC)s				
COs	5				PF	ROGR	AM C	опс	OME	S (PO	s)			PROGI OUTC	RAM SP OMES (I	ECIFIC PSOs)	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1		2	2	1	2	2	-	-	-	-	2	2	3	2	1	2	
CO2		3	3	1	2	2	-	-	-	-	2	2	3	3	2 2		
CO3		3	3	1	2	2	-	-	-	-	2	2	3	3	3 2 2		
CO4		3	2	1	2	2	-	-	-	-	2	2	3	3	2	2	
CO5		2	2	1	2	2	-	-	-	-	2	2	3	2	2	2	

OMB101	TOTAL QUALITY MANAGEMENT	L	Т	Р	С							
		3	0	0	3							
OBJECTIVES												
 To lear 	n the quality philosophies and tools in the managerial perspective.											
UNIT I	INTRODUCTION				9							
Quality – visio	n, mission and policy statements. Customer Focus – customer perce	eptio	n of									
quality, Transla	ating needs into requirements, customer retention. Dimensions of proc	duct	and	С	:01							
service quality.	Cost of quality.											
UNIT II	PRINCIPLES AND PHILOSOPHIES OF QUALITY MANAGEMENT				9							
Overview of the	e contributions of Deming, Juran Crosby, Masaaki Imai, Feigenbaum, Ish	nikav	va,									
Taguchi techniques - introduction, loss function, parameter and tolerance design, signal to												
noise ratio. Concepts of Quality circle, Japanese 5S principles and 8D methodology												
UNIT III STATISTICAL PROCESS CONTROL												
Meaning and s	ignificance of statistical process control (SPC) – construction of control c	hart	s for									
variables and	attributed. Process capability – meaning, significance and measureme	nt –	Six									
sigma - concepts of process capability. Reliability concepts – definitions, reliability in series and												
parallel, product life characteristics curve.Total productive maintenance (TMP),												
Terotechnolog	y. Business process Improvement (BPI) – principles, applications, reeng	jinee	ering									
process, benef	its and limitations.											
UNIT IV	TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT				9							
Quality functio	ns development (QFD) – Benefits, Voice of customer, information orga	niza	tion,									
House of quali	ty (HOQ), building a HOQ, QFD process. Failure mode effect analysis (F	-ME	A) –	C	:04							
requirements	of reliability, failure rate, FMEA stages, design, process and docume	enta	tion.		01							
Seven Tools (c	old & new). Bench marking and POKA YOKE.											
UNIT V	QUALITY SYSTEMS ORGANIZING AND IMPLEMENTATION				9							
Introduction to	IS/ISO 9004:2000 – quality management systems – guidelines for perfor	mar	ice									
improvements.	Quality Audits. TQM culture, Leadership – quality council, e	mplc	yee		05							
involvement, n	notivation, empowerment, recognition and reward - TQM framework,	bene	efits,		.05							
awareness and	d obstacles.											
	TOTAL	. : 45	5 PE	RIC	DS							
TEXT BOOKS												
1. Dale H.	Besterfield, Carol Besterfield – Michna, Glen H. Besterfield, Mary Bester	field	– Sa	acre	;							
Hermant – Urdhwareshe, Rashmi Urdhwareshe, Total Quality Management, Revised Third												
edition,	Pearson Education, 2011											
2. Shridha	ara Bhat K, Total Quality Management – Text and Cases, Himalaya Publi	shin	g Ho	use	Э,							
First Ec	lition 2002.											

REFE	REN	ICE I	BOOK	٢S														
1.	Do Edi	ugla: ition,	s C. M Wiley	lontgo / India	omory a Pvt	, Intro Limite	oducti d, 20	on to 08.	Statis	tical C	Quality	Contro	ol, Wile	ey Stude	nt Editior	n, 4th		
2.	Jar Edi	nes l ition,	R. Eva Thon	ans a nson,	nd Wi 2005	lliam	M. Lir	ndsay	, The	Mana	gemer	nt and	Contro	l of Qual	lity, Sixth	1		
3.	Poo 200	ornin 03.	na M.	Chara	antima	ath, To	otal Q	uality	Mana	ageme	ent, Pe	arson	Educa	tion, Firs	t Indian	Reprint		
4.	Indian standard – quality management systems – Guidelines for performance improvement (Fifth Revision), Bureau of Indian standards, New Delhi.																	
COURSE OUTCOMES																		
At the	end	d of t	he co	ourse	, the	stude	nt sh	ould	be ab	le:								
CO1	To apply quality philosophies and tools to facilitate continuous improvement and ensure customer delight.																	
CO2	To understand the principles of business process improvement																	
CO3	То	To understand and apply the concepts of statistical process control																
CO4	То	appl	y the	tools	and te	echnic	ues ι	used f	or qua	ality m	nanage	ement						
CO5	То	unde	erstan	d the	meth	ods ir	orga	nizing	and	imple	mentat	tion of	quality	systems	6			
					Μ	APPI	NG O	F CO	s WI1	тн рс)s AN[D PSO	s					
COs	5				PR	OGRA		UTCO	MES	(POs	5)			PROGI OUTC	RAM SP OMES (ECIFIC PSOs)		
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1		3	2	3	3	3	-	-	-	-	2	2	2	1	1	1		
CO2		3	3	3	3	2	-	-	-	-	2	2	2	1 1 1				
CO3		3	3	2	3	3	-	-	-	-	2	2	2	1 1 1				
CO4		2	3	3	3	2	-	-	-	-	2	2	2	1	1	1		
CO5		3	3	2	3	2	-	-	-	-	2	2	2	1	1	1		

ГГ			— T								
OME104	INDUSTRIAL SAFETY ENGINEERING	L	Т	Ρ	С						
		3	0	0	3						
OBJECTIVES											
 To prov process 	ide exposure to the students about safety and health provisions relateres as laid out in Factories act 1948	d to	haz	ardo	ous						
 To famil 	iarize students with powers of inspectorate of factories										
 To help students to learn about Environment act 1986 and rules framed under the act. To provide under the students of automatic structures in the interview. 											
 I o provide wide exposure to the students about various legislations applicable to an indus unit. 											
 To prepare onsite and offsite emergency plan. 											
UNIT I	FACTORIES ACT – 1948				9						
Statutory authorities – inspecting staff, health, safety, provisions relating to hazardous processes, welfare, working hours, employment of young persons – special provisions – penalties and procedures-Tamil Nadu Factories Rules 1950 under Safety and health chapters of Factories Act 1948											
UNIT II	ENVIRONMENT ACT – 1986			ļ	9						
General powers of the central government, prevention, control and abatement of environmental pollution-Biomedical waste (Management and handling Rules, 1989-The noise pollution (Regulation and control) Rules, 2000-The Batteries (Management and Handling Rules) 2001- No Objection certificate from statutory authorities like pollution control board. Air Act 1981 and Water Act 1974: Central and state boards for the prevention and control of air pollution-powers and functions of boards – prevention and control of air pollution – fund – accounts and audit, penalties and procedures.											
UNIT III	MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMI RULES 1989		L	!	9						
Definitions – du – information to toxic chemicals	ities of authorities – responsibilities of occupier – notification of major ac b be furnished – preparation of offsite and onsite plans – list of hazardo – safety reports – safety data sheets.	ccide ous	ents and	С	03						
UNIT IV	OTHER ACTS AND RULES			9	9						
Indian Boiler A mines act 1952 wastes (manag other construct 1983-Pesticides	ct 1923, static and mobile pressure vessel rules (SMPV), motor vehicl 2, workman compensation act, rules – electricity act and rules – haz gement and handling) rules, 1989, with amendments in 2000- the build tion workers act 1996., Petroleum rules, Gas cyclinder rules-Explosives Act	e ru zard ing ves	les, ous and Act	C	04						
UNIT V	INTERNATIONAL ACTS AND STANDARDS				9						
Occupational Safety and Health act of USA (The Williames - Steiger Act of 1970) – Health and safety work act (HASAWA 1974, UK) – OSHAS 18000 – ISO 14000 – American National Standards Institute (ANSI).											
	TOTAL	: 45	5 PE	RIO	DS						
TEXT BOOKS											
 The Factories Act 1948, Madras Book Agency, Chennai, 2000 The Environment Act (Protection) 1986, Commercial Law Publishers (India) Pvt.Ltd., Delhi. Water (Prevention and control of pollution) act 1974, Commercial Law publishers (I Pvt.Ltd., New Delhi. 											

REFERENCE BOOKS

1.	Air (Prevention and control of pollution) act 1981, Commercial Law Publishers (India) Pvt.Ltd.
	New Delhi.

- 2. The Indian boilers act 1923, Commercial Law Publishers (India) Pvt.Ltd., Allahabad.
- 3. The manufacture, storage and import of hazardous chemical rules 1989, Madras Book Agency, Chennai.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To list out important legislations related to health, Safety and Environment.
CO2	To list out requirements mentioned in factories act for the prevention of accidents.
CO3	To understand the health and welfare provisions given in factories act.
CO4	To understand the statutory requirements for an Industry on registration, license and its renewal.
CO5	To prepare onsite and offsite emergency plan.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO2	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO3	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO4	2	1	-	-	1	2	2	2	2	1	2	2	1	1	1
CO5	2	2	-	-	1	2	2	2	2	2	2	2	1	1	1

	OTHER COURSES OFFERED BY CSE				
CS1406	FUNDAMENTALS OF DATA STRUCTURES IN C	L	т	Ρ	С
	(LAB INTEGRATED)				
	Common to EEE and EIE	3	0	2	4
OBJECTIVES					
 To learn 	the basics of C Programming				
 To learn 	the advanced features of C Programming				
 To explo 	ore the applications of linear data structures				
 To learn 	about how to represent and implement non-linear data structure				
 To learn 	about the basics of sorting, searching and Hash Table.				
UNIT I	C PROGRAMMING BASICS			9	+ 6
Structure of C	program – Data Types – Storage classes – Variables– Constar	nts -	_		
Keywords — 0	Operators – Input/Output statements, Assignment statements – De	cisio	on		
making statem	ents – Switch statement – Looping statements — Introduction to A	rray	'S:		
Declaration, Ini	tialization — One dimensional array — Two dimensional arrays.				
Lab Compone	nt				
Impleme	entation of basic c programs			С	D1
a. Find	greatest of three numbers				
b. Crea	te a simple Calculator				
Impleme	entation of array				
a. Con	nputing Mean, Median and Mode				
b. Mati	rix Addition				
UNIT II	FUNCTIONS, POINTERS AND STRUCTURES			9	+ 6
Introduction to	functions: Function prototype, function definition, function call, Recursi	on	-		
Pointers — Po	pinter operators — Pointer arithmetic — Array of pointers — Para	met	er		
passing: Pass	by value, Pass by reference. Structure – Nested structures — Pointe	er ai	٦d		
Structures —	Array of structures — Self-referential structures — Dynamic me	emo	ry		
allocation.				CC	2ר
Lab Compone	nt			0.	
Impleme	entation of user defined data types				
a. Con	nputation of Sine series.				
b. Swa	upping of two numbers and changing the value of a variable using pa	ISS	зу		
refer	ence			1	
UNIT III	LINEAR DATA STRUCTURES			9	+ 6
List – Singly	Linked lists – Application of List - Polynomial addition - Linke	dl	st	C	23
implementation	of Stacks – Applications of Stack - Evaluating arithmetic expressi	ions	-		
Linked list imple	ementation of Queues – Application of Queue.				
Lab Compone	nt				
Impleme	entation of linear data structure				
a. List	Implementation of List, Stack, Queue.				
b. Impl	ement polynomial addition using list.				
c. Eva	uale aninmetic expression.				

UNIT	IV	NON-LINEAR DATA STRUCTURES	9 + 6
Trees	– Binary	/ Trees – Binary tree representation and traversals –Binary Search Trees –	CO4
Applic	ations of	trees. Graph and its representations – Graph Traversals – Topological Sort –	
Applic	ations of	graphs.	
Lab C	ompone	ent	
•	Implem	entation of tree	
	a. Cor	struct binary search tree.	
	b. Tra	verse the binary tree recursively in pre-order, post-order and in-order.	
•	Graph t	raversal	
	a. Dep	oth first search	
	b. Bre	adth first search.	
UNIT	V	SEARCHING, SORTING AND HASH TABLE	9 + 6
Linea	Search	- Binary Search. Bubble Sort - Insertion sort - Merge sort - Quick sort -	CO5
Hashi	ng functio	ons - Hash tables – Introduction to Overflow handling.	
Lab C	ompone	ent	
•	Sorting	& Searching	
	a. Inser	tion sort	
	b. Merg	le sort	
	c. Linea	ar Search	
	d. Bina	ry Search	
		THEORY : 45 PE	RIODS
		PRACTICAL : 30 PEI	RIODS
		TOTAL : 45 PEI	RIODS
TEXT	BOOKS		
1.	Reema	Thareja, —Data Structures Using C, Second Edition, Oxford University Press, 2	2014.
REFE	RENCE	BOOKS	
1.	Mark A	llen Weiss, "Data Structures and Algorithm Analysis in C", Fourth Edition, Pears	on
	Educati	on, 2013.	
2.	Ellis Ho	prowitz, Sartaj Sahni, Susan Anderson-Freed, —Fundamentals of Data Struct	ures in
	C, Seco	ond Edition, University Press, 2008.	
COUF	RSE OUT	COMES	
Upon	complet	ion of the course, students will be able to	
CO1	Implem	ent basics of C	
CO2	Implem	ent advanced features of C	
CO3	Apply th	ne different linear data structures to problem solutions.	
CO4	Implem	ent Tree and Graph data structure.	
CO5	Analyse	e the various sorting, searching algorithms and hash table.	

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO3	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO4	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO5	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2

CS1516	VISUAL PROGRAMMING	L	Т	Р	С						
	Common to EEE and EIE	3		0	3						
OBJECTIVES		-	-	-	-						
 To stud the GD 	y about the concepts of windows programming models, MFC application , getting inputs from Mouse and the Keyboard.	าร, ด	draw	/ing	with						
 To stud 	dy the concepts of Menu basics, menu magic and classic controls o	of tl	he v	winc	lows						
program	nming using VC++.										
To study the concept of Document/View Architecture with single & multiple document in toolbars, status bars and File I/O Serialization.											
To study about the integrated development programming event driven programming											
variability's, constants, procedures and basic ActiveX controls in visual basic.											
 To und 	erstand the database and the database management system, visu	al c	lata								
manag	er, data bound controls and ADO controls in VB										
UNIT I	FUNDAMENTALS OF WINDOWS AND MFC				9						
Messages : W	indows programming - SDK style - Hungarian notation and windows	da	ta								
types - SDK p	programming in perspective. The benefits of C++ and MFC - MFC d	lesi	gn								
philosophy –	Document / View architecture - MFC class hierarchy - AFX func	ction	IS.								
Application obj	ect - Frame window object - Message map. Drawing the lines – Cur	ves	_	С	01						
Ellipse – Polyg	ons and other shapes. GDI pens – Brushes - GDI fonts - Deleting GDI of	bjec	ts								
and deselecting	g GDI objects. Getting input from the mouse: Client & Non-client - Area h	nou	se								
messages - Mouse wheel - Cursor. Getting input from the keyboard: Input focus - Keystroke											
messages - Virtual key codes - Character & dead key messages.											
Creating a me	nu - Loading and displaying a menu - Responding to menu comma	nde	_		5						
Command ran	nes - Updating the items in menu update ranges - Keyboard acceler	ato	s								
Creating menu	s programmatically - Modifying menus programmatically - The system m	neni	J -								
Owner draw m	enus – Cascading menus - Context menus. The C button class – C lis	st b	ox	С	02						
class – C stati	c class - The font view application – C edit class – C combo box clas	s –	С								
scrollbar class.	Model dialog boxes – Modeless dialog boxes.										
UNIT III	DOCUMENT / VIEW ARCHITECTURE				9						
The in existend	ce function revisited – Document object – View object – Frame window of	obje	ect	С	03						
Dynamic objec	t creation. SDI document template - Command routing. Synchronizing m	ultip	le								
views of a do	cument – Mid squares application – Supporting multiple document ty	pes	-								
Alternatives to	MDI. Splitter Windows: Dynamic splitter window - Static splitter window	dow	s.								
Creating & init	alizing a toolbar - Controlling the toolbar's visibility – Creating & initializ	zing	а								
status bar - Cr	eating custom status bar panes – Status bar support in app wizard. Ope	ənin	g,								
closing and cre	eating the files - Reading & Writing – C file derivatives – Serialization ba	ISICS	5 -								
					0						
Monu bar To	PONDAMENTALS OF VISUAL BASIC	nor			9 04						
Form lavout –	Intermediate window. Designing the user interface. Aligning the contr	role			0 4						
Running the ar	pplication – Visual development and event driven programming	.010									
Variabilitvs: De	eclaration – Types – Converting variability types – User defined data ty	/pes	s -								
Lifetime of a v	ariability. Constants - Arrays – Types of arrays. Procedures: Subrouti	nes	_								
Functions – Ca	alling procedures. Text box controls – List box & Combo box controls –	Scr	oll								
bar and slider of	controls – File controls.										

UNIT	V		DAT	ABA	SE PF	ROGF	RAMN	IING V	WITH	VB						9		
Recor	d s	ets -	- Dat	a cor	ntrol -	- Dat	a cor	ntrol	prope	rties,	metho	ods. V	isual c	lata ma	nager:	CO5		
Specif	fying	g ind	ices	with 1	the v	isual	data	mana	ager	– En	tering	data	with th	ne visua	al data			
manag	ger.	Data	a bou	nd lis	st cor	trol –	- Data	a bou	ind co	ombo	box -	- Data	boun	d grid o	control.			
Mappi	ing (datab	ases:	Data	base	objec	x – T	ability	/ def	object	t, Quei	ry def	object.	Progra	mming			
the ac	ctive	data	abase	obje	cts –	ADO	objec	ct mo	del –	Estal	olishing	gaco	nnectio	on - Exe	ecuting			
SQL S	state	ement	ts–Cu	irsorty	pes a	and Io	cking	meci	nanısı	n–Ma	inipula	ting th	e reco	rd set o	bject –			
Simple	TOTAL: 45 PERIODS																	
TEXT	во	oks																
1.	. Jeff Prosise, 'Programming Windows With MFC', Second Edition, WP Publishers & Distributors (P) Ltd. Reprinted 2002																	
2.	2. Evangelos Petroutsos, 'Mastering Visual Basic 6.0', BPB Publications,2002.																	
REFE			BOO	٨S														
1.	He	erbert orinte	Schi	ildt, ʻl)2.	MFC	Progr	ammi	ing F	rom 1	the G	round	Up',	Secon	d Editio	n, McG	raw Hill,		
2.	Jo	hn F	aul l	Muller	, 'Vis	sual (C++	6 Fro	om th	ne Gi	round	Up S	econd	Edition	ı', McGı	raw Hill,		
	Reprinted,2002.																	
3. Curtis Smith & Micheal Amundsen, 'Teach Yourself Database Programming with Visual Basic 6																		
in 21 days', Tech media Pub,1999.																		
COUR	RSE	OUT	СОМ	ES														
Upon	cor	nplet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to)							
CO1	Un	derst	and s	study	about	the c	oncep	ots of	windo	ws pr	ogram	iming r	nodels					
CO2	Un	derst	and t	he co	ncept	s of N	lenu k	basics	s, mer	nu ma	gic and	d class	sic cont	rols.				
CO3	Un	derst	and	the c	once	ot of	Docu	ument	/View	Arch	nitectur	e with	n singl	e & mi	ultiple d	ocument		
	int	erfac	e.		-								· ·		•			
CO4	Un	derst	and t	he int	egrate	ed dev	velopr	ment	progra	ammir	ng eve	nt drive	en doc	ument ir	nterface.			
CO5	Un	derst	and t	he da	tabas	e and	the c	lataba	ase m	anage	ement	system	n progr	amming	l.			
	<u> </u>				Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	<u> </u>					
					_									PROG	RAM SI	PECIFIC		
COs	5				PR	OGR/		UTCC	MES	(POs	5)			OUTO	COMES	(PSOs)		
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	12 PSO1 PSO2 PSO3				
CO1		2	2	1	1	1	1	1	1	1	2	1	1	3	2	2		
CO2	2	3	2	1	1	1	1	1	1	1	2	1	2	3	2	2		
CO3	;	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2		
CO4	Ļ	2	1	1	1	1	1	1	1	1	1	1	2	3	2	2		
C05	;	2	2	1	1	1	1	1	1	1	1	1	2	3	2	2		

OBJECTIVES 3 0 0 • To understand the basic concepts in C Programming Language. • To understand Input and Output Statements. • To understand Input and Output Statements. • To enhance analyzing and problem solving skills and use the same for writing programs in C • To familiarize the basic syntax in arrays and pointers • To provide exposure to problem-solving through programming INTRODUCTORY CONCEPTS & CFUNDAMENTALS 9 Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. CO VINI I OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS 9 Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement 9 Defining a Function - Accessing a Function - Prototypes - Passing Arguments to a Commo - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions - Multidimensional Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Poninters and One-Dimen		T	Ρ	С
OBJECTIVES To understand Input and Output Statements. To enhance analyzing and problem solving skills and use the same for writing programs in C To familiarize the basic syntax in arrays and pointers To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS IS Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic CO Constants. OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS IS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Querators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - The break Statement - The continue Statement - The Comma Operator - The got Statement SC UNIT II FUNCTIONS & PROGRAM STRUCTURE S Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - Static Variables - Multidimensional Arrays - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays and Strings - Fundammentals - Pointer D	3	0	0	3
To understand the basic concepts in C Programming Language. To understand Input and Output Statements. To enhance analyzing and problem solving skills and use the same for writing programs in C To familiarize the basic syntax in arrays and pointers To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, prinf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT III FUNCTIONS & PROGRAM STRUCTURE Static Variables - Multifile Programs - More About Library Functions UNIT IV ARRAYS & POINTERS UNIT V ARRAYS & POINTERS UNIT V STRUCTURES, UNIONS & DATA FILES UNIT V ST	OBJECTIVES			
 To understand Input and Output Statements. To enhance analyzing and problem solving skills and use the same for writing programs in C To familiarize the basic syntax in arrays and pointers To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - The break Statement - The continue Statement - The Comma Operator - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The gots Statement - The trong a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Accessing a Function - Function Prototypes - Passing Arguments to a State Variables - Multifile Programs - More About Library Functions - Multidimensional Arrays - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Functions to Other Functions Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Uniors - Opening and Closing a Data File - Creating a Data File - Processing a Data Fil	 To understand the basic concepts in C Programming Language. 			
To enhance analyzing and problem solving skills and use the same for writing programs in C To familiarize the basic syntax in arrays and pointers To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS INTRODUCTORY CONCEPTS & C FUNDAMENTALS IP orgramming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT I OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, prinf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The goto Statement UNIT II FUNCTIONS & PROGRAM STRUCTURE UNIT II FUNCTIONS & PROGRAM STRUCTURE UNIT III FUNCTIONS & PROGRAM STRUCTURE UNIT IV ARRAYS & POINTERS Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files	 To understand Input and Output Statements. 			
To familiarize the basic syntax in arrays and pointers To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS INTRODUCTORY CONCEPTS & C FUNDAMENTALS Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Program Characteristics - The C Character Set - Identifiers and Keywords - Datia Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - the break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT II FUNCTIONS & PROGRAM STRUCTURE Settic Variables - Multifile Programs - More About Library Functions UNIT V ARRAYS & POINTERS Subtri V ARRAYS & POINTERS UNIT V STRUCTURES, UNIONS & DATA FILES Offining a Structure - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Deasing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions On Pointers - Pointers, UNIONS & DATA FILES Offining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Linformatted Data File - Creating a Data File - Processing a Data File - Drocesing a Data File - Processing a Data File - Drocesing a Data File - Processing a Data File - Drocesing and Closing a Data File - Creating a Data File - Processing a Data File - Drocesing a Structure - Processing a Structure - User-Defined Data Types (typedef) - Unity C STRUCTURES, UNIONS & DATA FILES C S Defining a Structure - Processing a St	 To enhance analyzing and problem solving skills and use the same for writing prog 	Jrams	; in (С.
To provide exposure to problem-solving through programming UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT II FUNCTIONS & PROGRAM STRUCTURE Setter Variables - Multifile Programs - More About Library Functions - Multidimensional CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Functions to Other Functions UNIT IV ARRAYS & POINTERS UNIT V STRUCTURES, UNIONS & DATA FILES Seting a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files	 To familiarize the basic syntax in arrays and pointers 			
UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS 9 Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. CO UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS 9 Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions 9 Defining a Structure - Processing a Structure to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files 9 UNIT IV <td> To provide exposure to problem-solving through programming </td> <td></td> <td></td> <td></td>	 To provide exposure to problem-solving through programming 			
Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT III FUNCTIONS & PROGRAM STRUCTURE Static Variables - Multifile Programs - More About Library Functions Static Variables - Multifile Programs - More About Library Functions UNIT V ARRAYS & POINTERS Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES Structures and Pointers - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures on Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files TOTAL : 45 PERIOL	UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS			9
Programming Languages - Introduction to C - Some Simple C Programs - Desirable Corogram Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic JNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS 9 Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement 9 JNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to -unctions - Pointers and Multidimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Maray of Pointers - Passing Functions 9 JNIT V STRUCTURES, UNIONS & DATA FILES 9 D	ntroduction to Computers - Computer Characteristics - Modes of Operation - Types	of	I	
Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. CO UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS 9 Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - Ibre goto Statement 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Opfining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnioms - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files 9	Programming Languages - Introduction to C - Some Simple C Programs - Desira	ble		
Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. Image: Constants - Constant - Constants - Constants - Constant - Constant - Constants - Constant - Consta	Program Characteristics - The C Character Set - Identifiers and Keywords - Data Type	÷s -	C	01
Constants. OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement 9 UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations to Other Functions 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Honions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files 9 Defining a Structure - Processing a Data File - Creating a Data File - Processing a Data File - Creating a Data File - Processing a Data File - Creating a Data File - Processing a Data File - Creating a Data File - Processing a Data File - Creating a Data File - Pr	Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic	olic		
UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL STATEMENTS 9 Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement 9 UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files 9	Constants.			
STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT III FUNCTIONS & PROGRAM STRUCTURE Patientian - Recursion - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions UNIT IV ARRAYS & POINTERS Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Unit V STRUCTURES, UNIONS & DATA FILES <t< td=""><td>UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTRO</td><td>) D</td><td></td><td>9</td></t<>	UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTRO) D		9
Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, Gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement UNIT III FUNCTIONS & PROGRAM STRUCTURE Polefining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions UNIT IV ARRAYS & POINTERS Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - 9	STATEMENTS			
Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, CO gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The While Statement - do while Statement - for Statement - Nested Control Structures - The CO switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement 9 JNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to 9 Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions 9 Offining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - JNIT V STRUCTURES, UNIONS & DATA FILES 9 <	Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignme	ent		
gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement CO JNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 JNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions 9 JNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Data File - Creating a Data File - Processing a Data File - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files 9	Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, prin	ntf,		
while Statement - do while Statement - for Statement - Nested Control Structures - The Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions JNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to 9 Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations to CO Functions - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Drocessing a Data File - Drocessing a Data File - Drocessing a Data File - Structures and Pointer - Processing a Data File - Creating a Data File - Processing a Data File - Drocessing a Data File - Creating a Data File - Processing a Data File - Drocessing a Data File - Drocessing a Data File - Creating a Data File - Processing a Data File - Drocessing a Data File - Drocessing a Data File - Creating a D	gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: T	The	C	02
switch Statement - The break Statement - The continue Statement - The Comma Operator - Interpret Statement UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions 9 UNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to 9 Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations to CO Functions 9 9 UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files 9 COAL : 45 PERIO	while Statement - do while Statement - for Statement - Nested Control Structures - T	Гhe		54
The goto Statement 9 UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - CO Static Variables - Multifile Programs - More About Library Functions 9 UNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to 9 Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions 9 UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures - Pointers - Passing Structures to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files 9 TOTAL : 45 PERIO	switch Statement - The break Statement - The continue Statement - The Comma Operato	or -		
UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - CO Static Variables - Multifile Programs - More About Library Functions 9 UNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to CO Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations to Other Functions CO UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files 9 TOTAL : 45 PERIO TOTAL : 45 PERIO 10	The goto Statement			
Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a CO Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions UNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to 9 Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations CO Functions 9 UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - J Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - CO Informatted Data Files TOTAL : 45 PERIO	UNIT III FUNCTIONS & PROGRAM STRUCTURE			9
Function – Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions UNIT IV ARRAYS & POINTERS Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to CO Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations CO Other Functions JNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - CO Informatted Data Files TOTAL : 45 PERIOD TOTAL : 45 PERIOD	Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to	оа	C	03
Static Variables - Multifile Programs - More About Library Functions 9 JNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions 9 JNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Informatted Data Files 9 TOTAL : 45 PERIOD	Function – Recursion - Storage Classes - Automatic Variables - External (Global) Variable	es -		
JNIT IV ARRAYS & POINTERS 9 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to CO Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations CO Functions - Pointers and Multidimensional Arrays - Dynamic Memory Allocation - Operations CO on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions Other Functions JNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files TOTAL : 45 PERIOL	Static Variables - Multifile Programs - More About Library Functions			
Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional CO Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations Functions - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions Operations On Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions 9 JNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files CO	JNIT IV ARRAYS & POINTERS	I		9
Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions JNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files	Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensio	nal	C	04
Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions JNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Jnformatted Data Files TOTAL : 45 PERIOR	Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers	; to		
on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions o Other Functions JNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures – CO Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Informatted Data Files TOTAL : 45 PERIOR TOTAL : 45 PERIOR		ons		
to Other Functions 9 UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures – CO Jnions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Image: Constructure of the second structure of the second struct	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operatio	ons		
UNIT V STRUCTURES, UNIONS & DATA FILES 9 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - CO Structures and Pointers - Passing Structures to Functions - Self-Referential Structures – Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - CO Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - TOTAL : 45 PERIOR TOTAL : 45 PERIOR TOTAL : 45 PERIOR	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function			
Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures – Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files TOTAL : 45 PERIO	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions			9
Structures and Pointers - Passing Structures to Functions - Self-Referential Structures – Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files TOTAL : 45 PERIO	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES	0	C	05
Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files TOTAL : 45 PERIO	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedefinition)	r) -		
Unformatted Data Files TOTAL : 45 PERIO	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation Image: Structure - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function Image: Other Functions Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Function Image: Dimensional Arrays - Arrays of Pointers - Passing Structure - User-Defined Data Types (typedef Image: Dimensional Arrays - Arrays - Arrays of Pointers - Passing Structures to Functions - Self-Referential Structures	r) - s —		
TOTAL : 45 PERIO	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef Structures and Pointers - Passing Structures to Functions - Self-Referential Structures Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data Fil	r) - s – le -		
TEXT BOOKS	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef Structures and Pointers - Passing Structures to Functions - Self-Referential Structures Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File Unformatted Data Files	r) - s – le -		
	Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operation on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Function to Other Functions UNIT V STRUCTURES, UNIONS & DATA FILES Defining a Structure - Processing a Structure - User-Defined Data Types (typedef Structures and Pointers - Passing Structures to Functions - Self-Referential Structures Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data Fil Unformatted Data Files	r) - s – le - 15 PE	ERIC)C

REFE	REN		BOO	ĸs												
1.	Th	еCF	Progra	ammir	ng Lai	nguag	e by l	Brian	Kerni	ghan	and De	ennis F	Ritchie	2 nd Editi	ion.	
2.	Le	t Us (C Yas	shava	nt kar	netkar	, BPB			-						
COUF	RSE	OUT	сом	ES			-									
Upon	con	nplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Ide	entify	situat	tions v	where	com	outatio	onal n	netho	ds an	d com	outers	would	be usefi	JI.	
CO2	De	mon	strate	the u	se of	opera	tors.	input	and o	utput	statem	ents a	nd cor	trol stat	ements	
CO3	Ide	ntifv	solut	tion to	n a r	oroble	m an	d apr	olv cc	ontrol	structi	ires a	nd use	er defin	ed func	tions for
	sol	lvina	the n	robler	n		un an		, oc		on don			dom.		
CO4		mon	strate	the u	se of	nume	ric ar	ravs a	and no	inter	2					
CO5	Demonstrate the ability to design creative solutions to real life problems faced by the industry															
005			Silaie	uie a	onity				- 30iu				5010113		by the m	uustry.
					N	APPI	NG O	F CO	s WI	TH PC)s ani) PSO	S			
					PR	OGR		итсс	MES	(POs	4			PROG	RAM SF	PECIFIC
COs	5									(1 03	<u>.</u>			OUTO	OMES	(PSOs)
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO2	2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO3	;	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO4	Ļ	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2
CO5	;	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2

OCS102	PROGRAMMING AND DATA STRUCTURES	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					<u>I</u>
 To lear 	n the basics of C Programming				
 To lear 	in the advanced features of C Programming				
 To exp 	lore the applications of linear data structures				
 To lear 	n about how to represent and implement non-linear data structure				
 To lear 	n about the basics of sorting, searching and Hash Table				
UNIT I	C PROGRAMMING BASICS				9
Structure of (C program – Data Types – Storage classes – Variables– Constan	nts	_		
Keywords —	Operators – Input/Output statements, Assignment statements – De	cisi	on	_	
making stater	nents – Switch statement – Looping statements – Introduction to A	rray	/s:	С	:01
Declaration, Ir	itialization — One dimensional array — Two dimensional arrays.				
UNIT II	FUNCTIONS, POINTERS AND STRUCTURES				9
Introduction to	functions: Function prototype, function definition, function call, Recursion	on			
Pointers — F	Pointer operators — Pointer arithmetic — Array of pointers — Para	met	ter		
passing: Pass	by value, Pass by reference. Structure – Nested structures — Pointe	er a	nd	С	;02
Structures —	Array of structures — Self-referential structures — Dynamic me	emc	ory		
allocation.					
UNIT III	LINEAR DATA STRUCTURES				9
List – Singly	Linked lists – Application of List - Polynomial addition - Linke	d l	ist	С	:03
implementatio	n of Stacks – Applications of Stack - Evaluating arithmetic expressi	ons	s -		
Linked list imp	lementation of Queues – Application of Queue				
UNIT IV	NON-LINEAR DATA STRUCTURES				9
Trees – Binar	y Trees – Binary tree representation and traversals –Binary Search Tre	ees	-	С	04
Applications o	f trees. Graph and its representations – Graph Traversals – Topological S	Sor	t —		
Applications o	f graphs.				
UNIT V	SEARCHING, SORTING AND HASH TABLE				9
Linear Search	- Binary Search. Bubble Sort - Insertion sort - Merge sort - Quick s	sort	-	С	05
Hashing functi	ons - Hash tables – Introduction to Overflow handling.				
	TOTAL	_ : 4	15 P	ERI	OD
TEXT BOOKS					
1. Reema	a Thareja, —Data Structures Using C, Second Edition, Oxford University F	Pres	ss, 2	2014	ł
REFERENCE	BOOKS				
1. Mark A	Ilen Weiss, "Data Structures and Algorithm Analysis in C", Fourth Edition,	, Pe	ears	on	
Educat	ion, 2013.				
2 Ellis H	orowitz, Sartaj Sahni, Susan Anderson-Freed, —Fundamentals of Data	Stru	uctu	res	in C
2. 200					

COUF	RSE	ουτ	СОМ	ES													
Upon	con	nplet	ion o	f the	cours	se, st	udent	s will	l be a	ble to)						
CO1	Imp	Implement basics of C															
CO2	Imp	Implement advanced features of C															
CO3	Ар	Apply the different linear data structures to problem solutions.															
CO4	Imp	Implement Tree and Graph data structure.															
CO5	Ana	alyse	the v	/ariou	s sort	ing, s	earch	ing al	gorith	ms ar	nd has	h table).				
					N	IAPPI	NG C	F CC)s Wl⁻	ГН РС)s ANI	D PSO	S				
										PROGRAM SPECIFIC							
COs	6	PROGRAM OUTCOMES (POS)												OUTCOMES (PSOs)			
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	
CO1		3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	
CO2	2	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	
CO3	;	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	
CO4		3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	
CO5	;	3	3	3	2	2	2	-	-	-	2	2	2	3	3	2	

				·	
OCS103	INTRODUCTION TO CLOUD COMPUTING	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES					
To hav	e the fundamental ideas behind Cloud Computing, the evolution of th	e p	arad	digm	ı, its
applica	bility, benefits, as well as current and future challenges				
To hav	e knowledge on the various virtualization techniques that serve in co	omp	outat	ion	and
storage	services on the cloud				
To und	erstand the technologies, architecture and applications of cloud computin	ng			
Io und	erstand the key security and compliance challenges of cloud computing				
UNIT I	INTRODUCTION				9
Introduction to	Cloud Computing - Roots of Cloud Computing- Parallel and Distri	but	əd		
Computing, M	ainframe and Grid Computing, Desired Features and benefits of	Clo	ud	C	01
Computing – C	hallenges and Risks of Cloud Computing				
UNIT II	VIRTUALIZATION		<u> </u>		9
Introduction t	o Virtualization Technology – Load Balancing and Virtualization	on	-		
Understanding	Hypervisor and its types, Types of Virtualizations – Hardware, OS, Me	mo	ry,	C	02
Application Vir	tualization, Levels of Virtualization				
UNIT III	CLOUD ARCHITECTURE, SERVICES AND STORAGE				9
NIST Cloud C	omputing Reference Architecture, Layered Cloud Architecture, Archite	ctu	ral	C	03
Design Challer	nges – Deployment models of cloud, Services of cloud – Cloud Storage.				
UNIT IV	RESOURCE MANAGEMENT AND SECURITY IN CLOUD				9
Inter Cloud Re	source Management – Resource Provisioning Methods – Security Overv	/iew	' —	C	04
Cloud Security	Architecture-Cloud Security Challenges – Data Security – Application Se	cur	ity		
– Virtual Mach					
			.		9
Google App Er	ngine (GAE) – GAE Architecture – Functional Modules of GAE – Amazor	n VV	eb	C	05
Services (AWS	6) – GAE Applications – Cloud Software Environments – Bio-data Platfo	orm	&		
BIO CIOUd	TOTAL				
TEXT BOOKS	IOTAL	.:4	SP		702
TEXT BOOKS					<u>.</u>
1. Buyya F	R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradign	n", I	-irst	Ear	tion,
Jonn vv	liey & Sons, 2011.		4:	а Г	
2. Kai Hw	ang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Co	omp	utin	g, г	rom
2 Dittingh	Processing to the internet of Things, Morgan Radifiant Publishers, 201	IZ.	lom	onto	tion
J. Rittingn	ouse, John W., and James F. Ransome, Cloud Computing.	mp	leme	enta	uon,
REFERENCE	BOOKS				
1. Rajkuma	ar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Co	omp	utin	g",	Tata
	Hill, 2013.	۸		L".	τ.,
	Te, Anthony Verte, Robert Elsenpeter, "Cloud Computing - A Practical A	чрр	roac	n,	iata
	MIII, 2009.	o1		· · · ·	. 4 16 -
J. George I	reese, Goud Application Architectures: Building Applications and Infra	ເຣເກເ , ວດ		e in	line
	Tansactional Systems for EC2 and Deyond (Theory In Practice), O Relly	,∠0	ບອ.		

COUR	RSE	OUT	СОМ	ES															
Upon	con	nplet	ion o	f the	cours	se, st	udent	ts will	l be a	ble to)								
CO1	Art	icula	te the	e mair	n con	cepts.	, key	techn	ologie	əs, stı	rengths	s, and	limitat	ions of	cloud co	omputing			
	and	d the	poss	ible a	oplica	tions	for st	ate-of	-the-a	rt clo	ud com	nputing	1						
CO2	2 Understanding of fundamentals and technological aspects of virtualization along with										various								
001	terr	mino	ninologies used in Cloud Computing																
<u> </u>	Ido	antify the architecture and infrastructure of cloud computing including SeeS. DeeS. LeeS.																	
003	lae	sentity the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS,												5, 1885,					
	put	ublic cloud, private cloud, hybrid cloud, etc.																	
CO4	En	Enlighten the core issues of cloud computing such as security, privacy, and interoperability.												oility.					
CO5	D5 Be familiarization with areas of cloud technologies and working experience in several of them									f them									
					Μ		NG C	F CO	s WI	гн рс)s ANI	D PSO	s						
										(7.0	,			PROG	PROGRAM SPECIFIC				
COs	5	PROGRAM OUTCOMES (POs)												OUTCOMES (PSOs)					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1		2	1	-	-	-	1	-	-	-	-	-	-	2	1	-			
CO2	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-			
CO3	;	2	1	-	-	-	-	-	-	-	-	-	-	-	-	1			
CO4	•	1	-	-	-	-	-	2	1	-	-	-	2	-	-	1			
CO5	5	2	1	1	-	2	2	-	-	2	-	-	3	2	2	2			

OCS104	FUNDAMENTALS OF DATABASE DESIGN	F	>	С
	3 0	0)	3
OBJEC	TIVES			
∻ ⊺	o learn the fundamentals of data models and to represent a database system using E	R		
d	liagrams.			
∻ ⊺	o study the database design and SQL			
∻ ⊺	o make the students to understand the fundamentals of Transaction Processing and			
С	oncurrency			
∻ ⊺	o have an basic knowledge about the Storage implementation and query processing			
∻ ⊺	o understand database security concepts and database programming			
UNIT I	INTRODUCTION		ĝ)
Purpose	of Database System – Views of data – Data Models – Database System			
Architect	ture - Introduction to relational databases - Relational Model - Keys - Relational		~~	
Algebra	- SQL fundamentals - DDL-DML-DCL-TCL- Advanced SQL features - Embedded		CC)1
SQL-Sta	itic Vs Dynamic SQL			
UNIT II	DATABASE DESIGN		ĝ)
Entity-Re	elationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational			
Mapping	– Functional Dependencies – Non-loss Decomposition – First, Second, Third		~~	\ 2
Normal	Forms, Dependency Preservation - Boyce/Codd Normal Form - Multi-valued			'2
Depende	encies and Fourth Normal Form – Join Dependencies and Fifth Normal Form			
UNIT III	TRANSACTION CONCEPTS AND CONCURRENCY CONTROL		9)
ntroduct	tion-Properties of Transaction- Serializability- Concurrency Control – Locking		CC)3
Mechani	sms- Two Phase Locking -Two Phase Commit Protocol-Dead lock- SQL Facilities			
for Conc	eurrency and Recovery			
		T	9)
RAID –	File Organization – Organization of Records in Files – Indexing and Hashing –		CC)4
Uraerea	Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic			
⊓asning Estimativ	- Query Processing Overview -Query optimization using Heuristics and Cost			
			c	2
Databas	e security issues - Discretionary access control - role based access - Encryption	Τ	<u> </u>	,)5
and pub	lic key infrastructures – challenges Information Retrieval: IR Concents Retrieval		00	
Models.	Queries in IR systems. Implementing functions, views, and triggers in MySQL /			
Oracle. (ODBC/JDBC connectivity with front end tools			
	TOTAL: 45	PEF	210	D
TEXT B	OOKS			
1. R	amezElmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth	Ec	ditic	n
Р	earson.			
2. A	braham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concer	ots",	, S	ixt
E	dition, Tata McGraw Hill.			
REFERE	ENCE BOOKS			
1. C	J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems". Eight	h E	diti	or
P	earson Education.			
2. R	aghu Ramakrishnan, —Database Management Systemsll, Fourth Edition, Mo	Gra	aw-	Hi
С	college Publications.			
COURSE OUTCOMES Upon completion of the course, students will be able to CO1 To understand relational data model, evolve conceptual model of a given problem and SQL

00.	
CO2	To understand Relational model and normalization to perform database design effectively
CO3	Apply and relate the concept of transaction, concurrency control and recovery in database
CO4	To understand the implementation technique and query processing
CO5	To understand the concepts of database security and database programming

MAPPING OF COS WITH POS AND PSOS

COs				PR	OGR/	AM O	итсс	MES	(POs	5)			PROGRAM SPECIFIC OUTCOMES (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	1	-	2	1	2	-	1	1	-	1	-	1	1	-	1			
CO2	2	-	1	1	1	-	1	1	-	-	-	1	1	-	1			
CO3	1	-	1	1	1	1	-	1	-	-	-	1	1	-	1			
CO4	2	-	2	1	1	1	-	1	-	-	-	1	1	-	1			
CO5	1	-	2	1	2	1	-	1	1	-	-	1	1	-	1			

OCS105	DATA ANALYTICS WITH R PROGRAMMING	Ρ	С
	3 0	0	3
OBJECTIVES			
 Studen 	ts will learn R. Programming language, data analytics, data visualization and st	atisti	ical
model	for data analytics		
 By con 	pletion of this course, students will be able to become data analyst		
UNIT I	INTRODUCTION TO DATA ANALYSIS		9
Overview of D	ata Analytics, Need of Data Analytics, Nature of Data, Classification of Data:		I
Structured, Se	emi-Structured, Unstructured, Characteristics of Data, Applications of Data	C	01
Analytics			
UNIT II	R PROGRAMMING BASICS	<u> </u>	9
Overview of R	programming, Environment setup with R Studio, R Commands, Variables and	6	
Data Types, C	ontrol Structures, Array, Matrix, Vectors, Factors, Functions, R packages		502
UNIT III	DATA VISUALIZATION USING R	<u> </u>	9
Reading and	getting data into R (External Data): Using CSV files, XML files, Web Data,	0	03
JSON files, Da	atabases, Excel files.		
Working with	R Charts and Graphs: Histograms, Boxplots, Bar Charts, Line Graphs,		
Scatterplots, F	vie Charts		
UNIT IV	STATISTICS WITH R	<u> </u>	9
Random Fore	st, Decision Tree, Normal and Binomial distributions, Time Series Analysis,	C	204
Linear and Mu	Itiple Regression, Logistic Regression		
UNIT V	PRESCRIPTIVE ANALYTICS	<u> </u>	9
Creating data	for analytics through designed experiments, Creating data for analytics	C	05
through active	learning, Creating data for analytics through reinforcement learning		
	TOTAL : 45 I	PER	10[
TEVT DOOK			
IEXI BOOKS		Grar	ohic
1. An Intro	oduction to R, Notes on R: A Programming Environment for Data Analysis and	Orap	
1. An Intro W. N. V	oduction to R, Notes on R: A Programming Environment for Data Analysis and /enables, D.M. Smith and the R Development Core Team.	Oraș	

REFERENCE BOOKS

1.	Jared P Lander, R for everyone: advanced analytics and graphics, Pearson Education, 2013															
	Dunlop, Dorothy D., and Ajit C. Tamhane. Statistics and data analysis: from elementary to intermediate. Prentice Hall, 2000.															
	inte	erme	diate.	Pren	tice H	all, 20	000.									
2.	GC	Case	lla an	d R.L	. Berg	ger, St	tatistio	cal Inf	erenc	e, The	omson	Learn	ing 20	02.		
3.	P. [Dalga	aard.	Introc	ductor	y Stat	tistics	with I	R, 2nd	d Editi	on. (Sj	oringei	⁻ 2008)			
4.	Mic	hael	Berth	nold, l	David	J. Ha	and, Ir	ntellige	ent Da	ata An	alysis,	Spring	ger			
5.	Has	Hastie, Trevor, et al.The elements of statistical learning.Vol. 2. No. 1. New York: springer,														
	2009.															
6.	Мо	2009. Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probability for														
	Eng	Montgomery, Douglas C., and George C. Runger. Applied Statistics and Probability for Engineers. John Wiley & Sons, 2010														
7.	Jos	eph	F Ha	air, W	illiam	C BI	ack e	tal,'	"Multi	variate	e Data	Analy	/sis",	Pearso	n Educa	tion, 7th
	edit	tion,	2013	•												
8.	Ma	rk G	arder	ner, "E	Beginr	ning F	R - Tł	ne Sta	atistica	al Pro	gramn	ning La	anguag	ge", Joh	n Wiley	& Sons,
	Inc	., 20 [.]	12.													
9.	W.	N. V	enab	les, D	. M. S	Smith	and th	ne R (Core 7	Гeam,	"An In	troduc	tion to	R", 201	3	
COUR	RSE	OUT	СОМ	ES												
Upon	com	plet	ion o	f the	cours	se, sti	udent	ts will	l be a	ble to	1					
CO1	Und	derst	and t	he ba	sics c	of data	a anal	ytics								
CO2	Und	derst	and a	and ap	oply th	ne R-F	Progra	ammir	ng cor	ncepts	;					
CO3	Арр	oly R	-Prog	Iramm	ning fo	or data	a visu	alizat	ion							
CO4	Imp	leme	ent va	arious	class	ificati	on teo	chniqu	les us	sing R						
CO5	Арр	oly R	prog	ramm	ing to	perfo	orm pe	erspe	ctive a	analyti	cs on	data				
					Μ	APPI	NG C	F CO	s WI	ГН РС	s AN[) PSO	S			
										(DO-	、			PROG	RAM SP	PECIFIC
COs	5				PR	JGRA				(PUS)			Ουτα	COMES	(PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO2		3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO3		3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO4		3	3	3	3	2	-	-	-	-	2	2	2	3	1	2
CO5		3	3	3	3	2	-	-	-	-	2	2	2	3	1	2

OCS106	DATA COMMUNICATIONS AND NETWORKING	т	Ρ	С
	3	0	0	3
OBJECTIVES	<u> </u>			
To un	derstand the protocol layering and physical level communication and to a	analy	ze	the
perfor	mance of a network.			
 To and 	alyze the contents of Data Link layer packet, based on the layer concept.			
 To lear 	rn the functions of network layer and the various routing protocols.			
 To fan 	niliarize the functions and protocols of the Transport layer.			
🛠 To kno	ow about different application layer protocols			
UNIT I	INTRODUCTION AND PHYSICAL LAYER		9	9
Networks - I	Network Types – Protocol Layering – TCP/IP Protocol suite – OSI Mode	I –		
Physical Laye	er: Performance – Transmission media – Switching – Circuit-switched Netwo	rks	С	01
- Packet Swit	ching.			
UNIT II	DATA-LINK LAYER & MEDIA ACCESS		9	9
Introduction -	- Link-Layer Addressing – DLC Services – Data-Link Layer Protocols – HDLC	2 – 0		
PPP – Media	Access Control – Wired LANs: Ethernet – Wireless LANs – Introduction – IE	EE	С	02
802.11, Bluet	ooth – Connecting Devices.			
UNIT III	NETWORK LAYER		9	9
Network Laye	er Services – IPV4 Addresses – Forwarding of IP Packets – Network Lag	yer	С	03
Protocols: IP,	ICMP v4 – Unicast Routing Algorithms – Protocols – Multicasting Basics – IP	V6		
Addressing –	IPV6 Protocol.			
UNIT IV	TRANSPORT LAYER		9	9
Introduction -	 Transport Layer Protocols – Services – Port Numbers – User Datagra 	am	C	04
Protocol – Tra	ansmission Control Protocol-Congestion Control Mechanisms-Streaming Cont	rol		
Transmission	Protocol.			
UNIT V				9
WWW and H	TTP – FTP – Email –Telnet –SSH – DNS – SNMP- Internet Multimedia.		C	05
	TOTAL : 45) PE	RIC	DS
IEXI BOOK	5			
1. Beh	rouz A. Forouzan, Data Communications and Networking, Fifth Edition TMH, 2	2013		
2. Willi	am Stallings, Data and Computer Communications, Tenth Edition, Pearson	Edu	cat	ion
2014	4.			
REFERENCE	BOOKS			
1. Larry Morga	L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, F in Kaufmann Publishers Inc., 2012	ifth E	dit	ion,
2. Nader	F. Mir, Computer and Communication Networks, Second Edition, Prentice Ha	II, 20	14.	
3. Ying-E Appro	Dar Lin, Ren-Hung Hwang and Fred Baker, Computer Networks: An Op ach, McGraw Hill Publisher, 2011	en S	So ι	irce

4. James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Sixth Edition, Pearson Education, 2013.

COUR	RSE	OUT	СОМ	ES												
Upon	cor	mplet	tion o	of the	cours	se, st	udent	ts wil	l be a	ble to)					
CO1	Ur	nders	tand t	he ba	asic la	yers,	funct	ions i	n com	puter	netwo	orks an	nd to ev	valuate t	he perfo	rmance
	of	a net	work.													
CO2	Ur	nders	tand t	he ba	isics c	of how	/ data	flows	from	one r	node to	anoth	er.			
CO3	Ar	nalyse	e and	desig	n rout	ing al	lgorith	ms.								
CO4	Ur	nders	tand o	desigr	n goal	s of C	onne	ctionle	ess ar	nd Co	nnectio	on orie	nted p	rotocols.		
CO5	Ur	nders	tand t	he wo	orking	of va	rious	applic	ation	layer	protoc	ols.				
					Μ	APPI	NG O	F CO	s WI	ГН РС)s ANI	D PSO	S			
										(DO				PROG	RAM SP	ECIFIC
COs	5				PR	UGRA				(POs	5)			OUTC	OMES (PSOs)
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	-	-	-	-	•	-	-	-	-	1	1	1
CO2	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1
CO5	3	3	3	-	-	-	-	-	-	-	-	-	1	1	1

	AUDIT COURSES		
AD1001	CONSTITUTION OF INDIA	Ρ	С
	2 0	0	0
OBJECTIVI	ES The second		
 Tead 	h history and philosophy of Indian Constitution.		
 Desc pers 	ribe the premises informing the twin themes of liberty and freedom from a civil pective.	rig	jhts
 Sum 	marize powers and functions of Indian government.		
🛠 Expl	ain emergency rule.		
🛠 Expl	ain structure and functions of local administration.		
UNIT I	INTRODUCTION		9
History of N Philosophy	laking of the Indian Constitution-Drafting Committee- (Composition & Working) - of the Indian Constitution-Preamble-Salient Features	с	;01
UNIT II	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES		9
Fundamenta Freedom o Directive Pr	Al Rights-Right to Equality-Right to Freedom-Right against Exploitation Right to f Religion-Cultural and Educational Rights-Right to Constitutional Remedies nciples of State Policy-Fundamental Duties	с	02
UNIT III	ORGANS OF GOVERNANCE		9
Parliament-	Composition-Qualifications and Disqualifications-Powers and Functions-Executive		
President-G	overnor-Council of Ministers-Judiciary, Appointment and Transfer of Judges,	С	03
Qualification	s Powers and Functions		
UNIT IV	EMERGENCY PROVISIONS		9
Emergency	Provisions - National Emergency, President Rule, Financial Emergency	С	04
UNIT V	LOCAL ADMINISTRATION		9
District's Ac role of Elec Zila Pachay level Orgar Appointed c	ministration head- Role and Importance-Municipalities- Introduction- Mayor and ed Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- at-Elected officials and their roles- CEO Zila Pachayat- Position and role-Block izational Hierarchy (Different departments)-Village level- Role of Elected and fficials-Importance of grass root democracy	с	;O5
	TOTAL : 45 PE	rio	DS
TEXT BOO	(S		
1. Bası	D D, Introduction to the Constitution of India, Lexis Nexis, 2015.		
2. Busi	S N, Ambedkar B R framing of Indian Constitution, 1st Edition, 2015.		
3. Jain	M P, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.		

COURSE Upon co	E OUTCOMES mpletion of the course, students will be able to
CO1	Able to understand history and philosophy of Indian Constitution.
CO2	Able to understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
CO3	Able to understand powers and functions of Indian government.
CO4	Able to understand emergency rule.
CO5	Able to understand structure and functions of local administration.
	MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-

AD1002		VALUE EDUCATION	Т	Р	С					
		2	0	0	0					
OBJECT	TIVES			-						
	Develor	o knowledge of self-development								
✤ E	Explain	the importance of Human values								
✤ [Develop	the overall personality through value education								
* (Overcoi	me the self destructive habits with value education								
✤ Ir	nterpre	t social empowerment with value education								
UNIT I					9					
Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non- moral valuation, Standards and principles, Value judgments										
UNIT II		IMPORTANCE OF VALUES			9					
Importar Concent Patriotis	nce of tration, m, Lov	cultivation of values, Sense of duty, Devotion, Self-reliance, Confide Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National L e for nature, Discipline	ence, Jnity,	с	02					
UNIT III		INFLUENCE OF VALUE EDUCATION			9					
Persona Integritya	ality an and dis	d Behaviour development - Soul and Scientific attitude. Positive Thin scipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from an	king, nger,	С	03					
Dignity c suffering	of labou g,love fo	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth.	ss Vs							
Dignity c suffering UNIT IV	of labou g,love fo	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION	ss Vs		9					
Dignity of suffering UNIT IV Aware of Character Science	of labou g,love fo of self-o er and of rein	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation	ss Vs ature ealth,	c	9 04					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V	of labou g,love fo of self-o er and of rein	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT	ature	c	9 04 9					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se	of labou g,love for of self-o er and of rein , Non v elf-cont	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT <i>v</i> iolence, Humility, Role of Women, All religions and same message, Mind crol, Honesty, Studying effectively	ature ealth, your	c	9 04 9 05					
Dignity of suffering UNIT IV Aware of Character Science UNIT V Equality, Mind, Se	of labou g,love for of self-o er and of rein , Non v elf-cont	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind crol, Honesty, Studying effectively TOTAL : 4	ature ealth, your	C	9 04 9 05					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE	of labou g,love for of self-o er and of rein , Non v elf-cont	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS	ature ealth, your	C	9 04 9 05 DDS					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. C	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi	ature ature alth, your I5 PE rd Ur	C C RIO	9 04 9 05 0DS					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. O F COURS	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind rrol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES	ature ealth, your I5 PE	C C RIC	9 04 9 05 0DS sity					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. O F COURS	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N E OUT omplet	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES tion of the course, students will be able to	ss Vs ature ealth, your IS PE	C C RIC	9 04 9 05 0DS					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. O F COURS Upon co	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N E OUT omplet Gain	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES tion of the course, students will be able to knowledge of self-development	ature ature alth, your I5 PE	C C RIC	9 04 9 05 0DS sity					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. 0 F COURS Upon co CO1	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,1 E OUT omplet Gain Lear	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT <i>r</i> iolence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES tion of the course, students will be able to knowledge of self-development n the importance of Human values	ature ealth, your IS PE	C	9 04 9 05 0DS					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. O F COURS Upon co CO1 CO2 CO3	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N E OUT omplet Gain Learn Deve	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind trol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES tion of the course, students will be able to knowledge of self-development n the importance of Human values elop the overall personality through value education	ature ealth, your I5 PE	C	9 04 9 05 0DS sity					
Dignity of suffering UNIT IV Aware of Characte Science UNIT V Equality, Mind, Se REFERE 1. 0 F COURSI Upon co CO1 CO2 CO3 CO3	of labou g,love fo of self-o er and of rein , Non v elf-cont ENCE I Chakrol Press ,N E OUT Gain Lean Deve Over	ur, Universal brotherhood and religious tolerance, True friendship Happines or truth. REINCARNATION THROUGH VALUE EDUCATION destructive habits, Association and Cooperation, Doing best for saving na Competence –Holy books vs Blind faith, Self-management and Good he carnation VALUE EDUCATION IN SOCIAL EMPOWERMENT violence, Humility, Role of Women, All religions and same message, Mind rol, Honesty, Studying effectively TOTAL : 4 BOOKS borty , S.K. "Values and Ethics for organizations Theory and practice", Oxfor New Delhi COMES tion of the course, students will be able to knowledge of self-development n the importance of Human values elop the overall personality through value education rcome the self destructive habits with value education	ss Vs ature ealth, your I5 PE	C C RIC	9 04 9 05 0DS					

	MAPPING OF COs WITH POs AND PSOs														
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	1	1	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-

1.0.00		.			
AD1003	PEDAGOGY STUDIES	L	T	Ρ	C
		2	0	0	0
OBJECTIVE	5				
 Under 	stand the methodology of pedagogy.				
 Comp develor 	are pedagogical practices used by teachers in formal and informal oping countries.	clas	ssroo	oms	IN
 Infer guida 	now can teacher education (curriculum and practicum) and the school nce materials best support effective pedagogy.	curr	iculu	m a	and
✤ Illustra	ate the factors necessary for professional development.				
 Identi 	y the Research gaps in pedagogy.				
UNIT I	INTRODUCTION AND METHODOLOGY			9	9
Aims and rat learning, Cu Overview of r	onale, Policy background, Conceptual framework and terminology - The riculum, Teacher education - Conceptual framework, Research ques nethodology and Searching.	orie stion	s of s –	C	01
UNIT II	THEMATIC OVERVIEW			!	9
Pedagogical developing c	practices are being used by teachers in formal and informal classro	oom	s in	C	02
UNIT III	EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTIC	ES		!	9
Methodology education (cu support effect for effective Teachers' att	for the in depth stage: quality assessment of included studies - How can irriculum and practicum) and the school curriculum and guidance materi tive pedagogy? - Theory of change - Strength and nature of the body of e pedagogical practices - Pedagogic theory and pedagogical approx itudes and beliefs and Pedagogic strategies.	tead als t vide ache	cher best nce es -	C	03
UNIT IV	PROFESSIONAL DEVELOPMENT			!	9
Professional support - Su Barriers to lea	development: alignment with classroom practices and follow up support oport from the head teacher and the community - Curriculum and assest arning: limited resources and large class sizes	sme	veer nt –	C	04
UNIT V	RESEARCH GAPS AND FUTURE DIRECTIONS			!	9
Research de Disseminatio	sign – Contexts – Pedagogy - Teacher education - Curriculum and asses n and research impact.	sme	nt -	C	05
	TOTAL	. : 45	5 PE	RIO	DS
REFERENCE	BOOKS				
1. Acker (2): 24	s J, Hardman F (2001) Classroom interaction in Kenyan primary schools	s, Co	ompa	are,	31
2. Agrav Curric	al M (2004) Curricular reform in schools: The importance of evaluat ulum Studies, 36 (3): 361-379.	ion,	Jou	rnal	of
3. Akyea resea	impong K (2003) Teacher training in Ghana - does it count? Multi-site tea rch project (MUSTER) country report 1. London: DFID.	ache	r ed	ucat	ion
4. Akyea basic Educa	mpong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching a maths and reading in Africa: Does teacher preparation count? International Development, 33 (3): 272–282.	and Iatioi	lear nal 、	ning Jour) of nal
5. Alexa Oxfor	nder RJ (2001) Culture and pedagogy: International comparisons in prir d and Boston: Blackwell.	nary	edu	cati	on.

COURSI	ΞΟυτ	СОМ	ES													
Upon co	mplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Unde	erstar	nd the	meth	odolo	gy of	peda	gogy								
CO2	Unde deve	erstan eloping	nd Peo g cour	dagog htries.	jical p	ractic	es us	ed by	teach	ners in	formal	and in	formal c	lassroom	ns in	
CO3	Find guida	Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy.														
CO4	Knov	Know the factors necessary for professional development.														
CO5	Iden	tify the	e Res	earch	gaps	in pe	edago	gy.								
				Μ	APPI	NG O	F CO	s WI	гн рс)s ANI	D PSO	s				
COs				PROGRAM OUTCOMES (POs) PROGRAM SPECIFIC OUTCOMES (PSOs)												
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	
CO4	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	

1

-

-

CO5

-

-

-

-

_

-

-

_

_

-

-

OBJECT	•	1			-									
OBJECT	JECTIVES													
✤ D	VES													
<u>،</u> ،	evelop healthy mind in a healthy body thus improving social health also impro	ve e	ficie	ncy										
✤ In	vent Do's and Don't's in life through Yam													
∻ C	ategorize Do's and Don't's in life through Niyam													
∻ D	evelop a healthy mind and body through Yog Asans													
✤ In	vent breathing techniques through Pranayam													
UNIT I	INTRODUCTION TO YOGA				9									
Definition	s of Eight parts of yog.(Ashtanga)			С	01									
UNIT II	YAM				9									
Do`s and	Don't's in life.Shaucha, santosh, tapa, swadhyay, ishwarpranidhan			С	02									
UNIT III	NIYAM				9									
Do`s and	Don't's in life. Ahinsa, satya, astheya, bramhacharya and aparigraha			С	03									
UNIT IV ASAN														
Various y	og poses and their benefits for mind & body			С	04									
UNIT V	PRANAYAM		9											
Regulariz	ation of breathing techniques and its effects-Types of pranayam			С	05									
	ΤΟΤΑ	L:4	5 PE	RIO	DS									
REFERE	NCE BOOKS													
1. "F (F	ajayoga or conquering the Internal Nature" by Swami Vivekananda, A ublication Department), Kolkata	dvait	a A	shra	ma									
2. 'Y	ogic Asanas for Group Tarining-Part-I" : Janardan Swami Yogabhyasi Manda	l, Na	gpu	-										
COURSE	OUTCOMES													
Upon co	npletion of the course, students will be able to													
CO1	Develop healthy mind in a healthy body thus improving social health also im	orove	effi	cien	су									
CO2	Learn Do's and Don't's in life through Yam													
CO3	Learn Do's and Don't's in life through Niyam													
CO4	Develop a healthy mind and body through Yog Asans													
CO5	Learn breathing techniques through Pranayam													

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO2	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO3	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO4	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-
CO5	-	-	-	-	-	-	1	1	-	-	-	1	-	-	-

AD1005	PERSONALITY DEVELOPMENT THROUGH LIFE	1	т	P	ſ
	ENLIGHTENMENT SKILLS	-	•	'	
		2	0	0	0
OBJEC	IVES				
∻ [evelop basic personality skills holistically				
✤ [evelop deep personality skills holistically to achieve happy goals				
✤ F	ewrite the responsibilities				
✤ F	eframe a person with stable mind				
UNIT I	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I				9
Verses- (virtue)	19,20,21,22 (wisdom) - Verses- 29,31,32 (pride & heroism) – Verses- 26,28	8,63	3,65	С	:01
UNIT II	NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II				9
Verses-	52,53,59 (dont's) - Verses- 71,73,75,78 (do's)			С	:02
UNIT III	ORGANS OF GOVERNANCE				9
Shrimad Chapter	Bhagwad Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, δ-Verses 5,13,17,23, 35 - Chapter 18-Verses 45, 46, 48	27,	35	С	:03
UNIT IV	EMERGENCY PROVISIONS				9
Stateme Chapter	nts of basic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56, 12 -Verses 13, 14, 15, 16,17, 18	62,	68	С	:04
UNIT V	LOCAL ADMINISTRATION				9
Chapter Verses 3	2-Verses 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chapte 37,38,63	er 1	8 –	С	:05
	TOTAL	: 45	5 PE	RIC	DS
REFERE					
1. C	opinath,Rashtriya Sanskrit Sansthanam P, Bhartrihari's ThreeSatakam , Niti-si lew Delhi,2010	ring	jarva	airaç	gya
2. S	Jolkata,2016.	n L	рера	rtm	ent
COURS	EOUTCOMES				
Upon co	mpletion of the course, students will be able to				
opon ot	To develop basic personality skills holistically				
CO1	To develop doop personality akilla balistically to achieve benny goals				
CO1 CO2	To develop deep personality skills holistically to achieve happy goals				
CO1 CO2 CO3	To rewrite the responsibilities				
CO1 CO2 CO3 CO4	To rewrite the responsibilities To reframe a person with stable mind, pleasing personality and determination				

MAPPING OF COs WITH POs AND PSOs

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	-

AD1006

UNNAT BHARAT ABHIYAN

L T P C 2 0 0 0

OBJECTIVES

- To engage the students in understanding rural realities
- To identify and select existing innovative technologies, enable customization of technologies, or devise implementation method for innovative solutions, as per the local needs.
- To leverage the knowledge base of the institutions to devise processes for effective implementation of various government programmes
- To understand causes for rural distress and poverty and explore solutions for the same
- To apply classroom knowledge of courses to field realities and thereby improve quality of learning

UNIT I	QUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARAT ABHIYAN	9
Introduction to	Unnat Bharat Abhiyan - concept, scope and objectives, rural life, rural society,	
cast and gend	ler relations, rural values with respect to community, nature and resources,	
elaboration of	"Soul of India lies in villages" - (Gandhi Ji), Rural infrastructure, problems in	004
rural area.		CO1
Assignment:	Prepare a map (Physical, visual and digital) of the village you visited and write	
an essay abou	t inter-family relation in that village.	
UNIT II	RURAL ECONOMY AND LIVELIHOOD	9
Agriculture, far	ming, land ownership pattern, water management, animal husbandry, non-farm	
livelihoods and	artisans, rural entrepreneurs, rural market.	C O2
Assignment:	Describe your analysis of rural household economy, it's challenges and possible	602
pathways to ac	ldress them. Group discussion in class- (4) Field visit 3.	
UNIT III	RURAL INSTITUTIONS	9
History of Rura	al Development, Traditional rural organizations, Self Help Groups, Gram Swaraj	
and 3- Tier Pa	nchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Committee),	
local civil socie	ty, local administration. Introduction to Constitution, Constitutional Amendments	000
in Panchayati F	Raj – Fundamental Rights and Directive Principles.	603
Assignment:	Panchayati Raj institutions in villages? What would you suggest to improve their	
effectiveness?	Present a case study (written or audio-visual). Field Visit – 4.	
UNIT IV	RURAL DEVELOPMENT PROGRAMMES	9
National progra	ammes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman Bharat,	
Swatchh Bhara	at, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning,	
NRLM, MNREG	GA, etc.	004
Written Assig	nment: Describe the benefits received and challenges faced in the delivery of	604
one of these	programmes in the rural community, give suggestions about improving	
implementatior	of the programme for the rural poor.	

	/	FIELD WORK	9
Each s	student	selects one programme for field visit Field based practical activities:	
*	Interact	ion with SHG women members, and study of their functions and challenges; g for their skill building and livelihood activities	
*	Visit Mother the wor	GNREGS project sites, interact with beneficiaries and interview functionaries at k site	
*	Field vis measur	sit to Swachh Bharat project sites, conduct analysis and initiate problem solving res	
*	Conduc Plan(Gl	et Mission Antyodaya surveys to support under Gram Panchayat Development	
*	Interact officials resourc	ive community exercise with local leaders, panchayat functionaries, grass-root and local institutions regarding village development plan preparation and be mobilization	
*	Visit R resourc	ural Schools I mid-day meal centres, study Academic and infrastructural es and gaps	
*	Particip	ate in Gram Sabha meetings, and study community participation	CO5
*	Associa progran	ate with Social audit exercises at the Gram Panchayat level, and interact with nme beneficiaries	005
*	Attend	Parent Teacher Association meetings, and interview school drop outs	
*	Visit loc	al Anganwadi Centre and observe the services being provided	
*	Visit lo benefici	ocal NGOs, civil society organisations and interact with their staff and iaries.	
*	Organiz camps efficient	ze awareness programmes, health camps, Disability camps and cleanliness o Conduct soil health test, drinking water analysis, energy use and fuel cy surveys	
*	Raise u disaster	understanding of people's impacts of climate change, building up community's r preparedness	
*	Organis of irriga	se orientation programmes for farmers regarding organic cultivation, rational use tion and fertilizers and promotion of traditional species of crops and plants	
*	Formati mainter	ion of committees for common property resource management, village pond nance and fishing.	
		TOTAL : 45 PEF	RIODS
TEXT	BOOKS		
4.	Singh, New De	Katar, Rural Development Principles, Policies and Management, Sage Publica elhi, 2015	ations,
5.	A Hand Studies	d book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchaya , 2002	ati Raj
6.	United I	Nations, Sustainable Development Goals, 2015 un.org/sdgs	
REFE	RENCE	BOOKS	
2.	M.P.Bo	raian, Best Practices in Rural Development, Shanlax Publishers	
3.	Unnat E	Bharat Abhiyan Website : www.unnatbharatabhiyan.gov.in	

COURS	e out	сом	ES													
Upon co	omplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Unde	erstar	nd of r	ural li	fe, cu	lture a	and so	ocial r	ealitie	S						
CO2	Unde	erstar	nd the	conc	ept of	meas	surem	ent b	y com	pariso	n or ba	alance	of param	neters.		
CO3	Deve	elop a	sens	e of e	mpatl	ny an	d bon	ds of	mutua	ality wit	th loca	l comm	nunity			
CO4	Аррі	Appreciate significant contributions of local communities to Indian society and economy														
CO5	Valu	e the	local	knowl	edge	and v	visdor	m of tl	ne coi	nmuni	ty					
				Μ	APPI	NG O	F CO	s WI	гн рс)s AN[D PSO	S				
<u> </u>				PROGRAM SPECIFIC OUTCOMES (PSOs)												
003	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
CO3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
CO4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
CO5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

8120810990, 2014

AD1007	ESSENCE OF INDIAN KNOWLEDGE TRADITION	Ρ	С
	2 0	0	0
OBJECTIVES			
🛠 Get a k	nowledge about Indian Culture		
 Know Ir 	ndian Languages and Literature religion and philosophy and the fine arts in India		
 Explore 	the Science and Scientists of Ancient, Medieval and Modern India		
 Unders 	tand education systems in India		
UNIT I	INTRODUCTION TO CULTURE		9
Culture, civiliz	ation, culture and heritage, general characteristics of culture, importance of	C	01
culture in huma	an literature, Indian Culture, Ancient India, Medieval India, Modern India		
UNIT II	INDIAN LANGUAGES AND LITERATURE	1	9
Indian Langua	ges and Literature - I: Languages and Literature of South India, - Indian	C	02
Languages and	J Literature – II: Northern Indian Languages & Literature		
UNIT III	RELIGION AND PHILOSOPHY		9
Major religions	practiced in India and Understanding their Philosophy - religious movements in	0	<u></u>
Modern India (Selected movements only)		03
UNIT IV	FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)	1	9
Indian Painting	, Indian handicrafts, Music, divisions of Indian classic music, modern Indian		
music, Dance	and Drama, Indian Architecture (ancient, medieval and modern), Science and	C	04
Technology in	India, development of science in ancient, medieval and modern India		
UNIT V	EDUCATION SYSTEM IN INDIA	1	9
Education in a	ancient, medieval and modern India, aims of education, subjects, languages,		
Science and S	cientists of Ancient India, Science and Scientists of Medieval India, Scientists of	C	05
Modern India			
	TOTAL : 45 PE	RIO	DS
REFERENCE	BOOKS		
1. Kapil Ka	apoor, "Text and Interpretation: The India Tradition",ISBN: 81246033375, 2005		
2. "Scienc	e in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007		
3. NCERT	, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450 494-X, 200		
4. Narain,	"Examinations in ancient India", Arya Book Depot, 1993		

5. Satya Prakash, "Founders of Sciences in Ancient India", Vijay Kumar Publisher, 1989

6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-

235

COURS	E OUT	СОМ	ES													
Upon co	omplet	tion o	f the	cours	se, st	udent	ts wil	l be a	ble to)						
CO1	Unde	erstan	id phil	losopl	ny of l	Indiar	n cultu	ıre.								
CO2	Disti	nguisl	h the	Indiar	lang	uages	s and	literat	ure.							
CO3	Lear	Learn the philosophy of ancient, medieval and modern India.														
CO4	Acqu	Acquire the information about the fine arts in India.														
CO5	Unde	erstan	ıd edu	lcatio	n syst	ems i	in Indi	a								
				Μ	APPI	NG O	F CO	s WI	гн рс)s ANI	D PSO	s				
COs				PR)GR/	AM O	UTCC	OMES	(POs	i)			PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	
CO2	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	
CO4	-	-	-	_	-	_	_	_	_	1	_	1	-	-	-	

1

-

1

-

_

_

CO5

-

-

-

_

_

_

-

-

-

AD1008	SANGA TAMIL LITERATURE APPRECIATION	L	Т	Ρ	С
		2	0	0	0
OBJECTIVES					<u> </u>
 Introdu 	ction to Sanga Tamil Literature.				
 'Agathi 	nai' and'Purathinai' in SangaTamil Literature.				
 'Attrup 	padai' in SangaTamil Literature.				
🛠 'Purana	aanuru' in SangaTamil Literature.				
 'Pathitr 	upaththu' in SangaTamil Literature.				
UNIT I	SANGA TAMIL LITERATURE – AN INTRODUCTION				9
Introduction t SangamLitera GrammarTam	o Tamil Sangam–History of Tamil Three Sangams–Introduction to cure–Special Branches in Tamil Sangam Literature- Tamil Sangam Lite I Sangam Literature's parables.	o Ta eratu	amil re's	С	01
UNIT II	'AGATHINAI'AND'PURATHINAI'				9
Tholkappiyar's ofCulturefrom	Meaningful Verses–Three literature materials–Agathinai's message- Agathinai– Purathinai–Classification–Mesaage to Society from Purathina	His i.	tory	С	02
UNIT III	'ATTRUPPADAI'				9
Attruppadai L Attruppadaiin	iterature – Attruppadaiin 'Puranaanuru' – Attruppadaiin 'Pathitrup Paththupaattu'.	batht	hu'-	С	03
UNIT IV	'PURANAANURU'				9
Puranaanuru Puranaanuru.	on Good Administration, Ruler and Subjects–Emotion & its E	ffect	in	С	04
UNIT V	'PATHITRUPATHTHU'				9
Pathitrupathth Administration	uin 'Ettuthogai' – Pathitrupaththu's Parables –Tamildynasty: , Charity in Pathitrupaththu - Mesaage to Society from Pathitrupaththu.	Va	alor,	С	05
	TOTAL	. : 4	5 PE	RIO	DS
REFERENCE	BOOKS				
1. Sivaraj	a Pillai, The Chronology oftheEarlyTamils,SagwanPress,2018.				
2. HankH	eifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002.				
3. Kamil Pub,19	Zvelebil, The Smile of Murugan: OnTamil Literature of South India, 97.	Brill	Ac	adeı	mic
4. George Univers	eL. Hart, Poetsof theTamil Anthologies: AncientPoemsofLove and sity Press,2015.	Nar,	Pr	ince	ton
5. Xavier	S.Thani Nayagam, Landscape and poetry:a study of nature in classical Ta	amil	poe	try,A	sia

COURSI	EOUTCOMES	
Upon co	mpletion of the course, students will be able to	
CO1	Appreciate and apply the messages in Sanga Tamil Literature in the	ir life.
CO2	Differentiate 'Agathinai' and 'Purathinai'in their personal and societal	life.
CO3	Appreciate and apply the messages in' Attruppadai' in their personal	and societal life.
CO4	Appreciate and apply the messages in' Puranaanuru' in their person	al and societal life.
CO5	Appreciate and apply the messages in' Pathitrupaththu' in their perso	onal and societal life.
	MAPPING OF COS WITH POS AND PSOS	
		PROGRAM SPECIFIC

COs	PROGRAM OUTCOMES (POs)										OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-
CO2	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-
CO5	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-

FACULTY OF COMPUTER SCIENCE AND ENGINEERING

AND INFORMATION TECHNOLOGY

Minutes of the Second Meeting of the Board of Studies

The Second meeting of the Board of Studies for the Faculty of Computer Science and Engineering and Information Technology was held virtually on 20.01.2022 (Thursday), at 11.00 a.m.

The	followina	Members	were present	for	the	meetina:

		Dr. A. Chandrasekar, Professor and Head,				
		Faculty of Computer Science and Engineering and				
1.	Chairman	Information Technology,				
		St. Joseph's College of Engineering,				
		OMR, Chennai – 600 119.				
		Dr. J. C. Miraclin Joyce Pamila, Professor and Head,				
2	University Nominee	Department of Computer Science and Engineering				
Ζ.		Government College of Technology				
		Coimbatore – 641 013.				
		Dr. Krishna Moorthy Sivalingam, Professor,				
•	Subject Export	Department of Computer Science and Engineering,				
J.	Subject Expert	Indian Institute of Technology (IIT) Madras,				
		Chennai – 600 036.				
		Dr. G. Zayaraz, Professor & Head,				
4	Subject Export	Department of Computer Science and Engineering,				
4.		Puducherry Technological University				
		Puducherry – 605 014.				
-	Industrial Export	Mr. Abdul Muthalif, Director				
Э.		Cognizant, Chennai.				
	Post Graduate	Ms. S.Ram Lakshmi, Specialist Programmer				
6.	Meritorious	Infosys, Techno Park, SEZ, Mahindra World City, Paranur,				
	Alumnus	Chennai.				
7.	Dr.B.Parvatha Varthin	i, Dean & Professor of Computer Science and Engineering				
	St. Joseph's College of E	ngineering, OMR, Chennai – 600 119.				
8.	Dr. Lilly Raamesh, Pro	ofessor & Head, Department of Information Technology,				
	St. Joseph's College of E	ngineering, OMR, Chennai – 600 119.				

Minutes of the Second Board of Studies

Facu	Ity of Computer Science and Engineering and Information Technology
9.	Dr.G.Mariakalavathy, Professor of Computer Science and Engineering
10.	Dr.G.Murugesan, Professor of Computer Science and Engineering
11.	Dr.M P Rajakumar, Professor of Computer Science and Engineering
12.	Dr. Kalaivani P, Professor of Information Technology
13.	Dr.Sherly Puspha Annabel L, Professor of Information Technology
14.	Dr.D.Rosy Salomi Victoria, Associate Professor of Computer Science and Engineering
15.	Dr.R. Pugalenthi, Associate Professor of Computer Science and Engineering
16.	Dr.S.Jothi, Associate Professor of Computer Science and Engineering
17.	Dr.J.T.Anita Rose, Associate Professor of Computer Science and Engineering
10	Dr.F Sangeetha Francelin Vinnarasi, Associate Professor of Computer Science and
18.	Engineering
19.	Dr.R.Hemalatha, Associate Professor of Computer Science and Engineering
20.	Dr.B.Diwan, Associate Professor of Computer Science and Engineering
21.	Dr.Jesline, Associate Professor of Computer Science and Engineering
22.	Dr.A.Sheryl Oliver, Associate Professor of Computer Science and Engineering
23.	Dr.M.Anuradha, Associate Professor of Computer Science and Engineering
24.	Dr.J.Jean Justus, Associate Professor of Computer Science and Engineering
25.	Dr.V.Anjana Devi, Associate Professor of Computer Science and Engineering
26.	Dr.J.Ramya, Associate Professor of Computer Science and Engineering
27.	Dr.N.Angel, Associate Professor of Computer Science and Engineering
28.	Dr. B. Uma Maheswari, Associate Professor of Computer Science and Engineering
29.	Dr. Muthu Lakshmi V, Associate Professor of Information Technology
30.	Dr. Logeshwari D, Associate Professor of Information Technology
31.	Lathaselvi G, Associate Professor of Information Technology
32.	Dr. Heltin Genitha C, Associate Professor of Information Technology
33.	Dr. Tamizhselvi A, Associate Professor of Information Technology
34.	Dr. Sumathi S, Associate Professor of Information Technology
35.	Dr.Duraimurugan S, Associate Professor of Information Technology
36.	Dr. Raman C J, Associate Professor of Information Technology
37.	Dr. Anbu M, Associate Professor of Information Technology
38.	Dr.N. Mythili, Assistant Professor of Computer Science and Engineering
39.	Ms.M.Shalini, Assistant Professor of Computer Science and Engineering
40.	Ms.P.N.Jeipratha, Assistant Professor of Computer Science and Engineering
41.	Mr.K.Balaji, Assistant Professor of Computer Science and Engineering
42.	Dr.N.Manikandan, Assistant Professor of Computer Science and Engineering
43.	Dr.A.Prabhu Chakkaravarthy, Assistant Professor of Computer Science and Engineering

Minutes of the Second Board of Studies

 44. Mr.P.Varun, Assistant Professor of Computer Science and Engineering 45. Ms.S.Shanthini, Assistant Professor of Computer Science and Engineering 46. Mr.P.Naveen, Assistant Professor of Computer Science and Engineering 47. Mr.R.Ranjith, Assistant Professor of Computer Science and Engineering
 45. Ms.S.Shanthini, Assistant Professor of Computer Science and Engineering 46. Mr.P.Naveen, Assistant Professor of Computer Science and Engineering 47. Mr.R.Ranjith, Assistant Professor of Computer Science and Engineering
 46. Mr.P.Naveen, Assistant Professor of Computer Science and Engineering 47. Mr.R.Ranjith, Assistant Professor of Computer Science and Engineering
47. Mr.R.Ranjith, Assistant Professor of Computer Science and Engineering
48. Mr.S.Vinu, Assistant Professor of Computer Science and Engineering
49. Ms.K.Sudha, Assistant Professor of Computer Science and Engineering
50. Mr.K.Rajaganesh, Assistant Professor of Computer Science and Engineering
51. Ms.S.Janani, Assistant Professor of Computer Science and Engineering
52. Ms.Jenif D Souza WS, Assistant Professor of Computer Science and Engineering
53. Mr.V.Durai Raji, Assistant Professor of Computer Science and Engineering
54. Dr.Manikandan G Assistant Professor of Information Technology
55. Janani M, Assistant Professor of Information Technology
56. Divya J, Assistant Professor of Information Technology
57. Thilakavathy P, Assistant Professor of Information Technology
58. Ancy S ,Assistant Professor of Information Technology
59. Raja Mohamed N, Assistant Professor of Information Technology
60. Thresa Jeniffer J, Assistant Professor of Information Technology
61. Anitha S, Assistant Professor of Information Technology
62. Priyadharshini K, Assistant Professor of Information Technology
63. Kripa Sekaran, Assistant Professor of Information Technology
64. Poornima M, Assistant Professor of Information Technology
65. Deepa R, Assistant Professor of Information Technology
66. Linnet Princy Justina V, Assistant Professor of Information Technology
67. Arun Mozhi M, Assistant Professor of Information Technology
68. Radhakrishnan K R, Assistant Professor of Information Technology
69. Deepa K, Assistant Professor of Information Technology
70. Kavitha Devi G, Assistant Professor of Information Technology
71. Stephy S, Assistant Professor of Information Technology
72. Rini Sarah J, Assistant Professor of Information Technology
73. Anushya S, Assistant Professor of Information Technology
74. Gunajothi S, Assistant Professor of Information Technology
75. Thilagavathi P, Assistant Professor of Information Technology
Special Invitees
76. The Principal, St. Joseph's College of Engineering, OMR, Chennai – 600 119.
77. The Controller of Examinations, St. Joseph's College of Engineering, OMR,
Chennai – 600 119.

Minutes of the Second Board of Studies Minutes:

BOS 02. 01 WELCOME ADDRESS AND BRIEF INTRODUCTION OF THE MEMBERS OF BOARD OF STUDIES

The Second Board of studies meeting of Faculty of Computer Science and Engineering and Information Technology was commenced with welcome address by the Faculty Head. It was followed by brief introduction of members of Board of studies namely University Representative, Subject Experts, Industrial Expert and Alumnus and Internal Faculty Members.

BOS 02. 02 BRIEF REPORT ON THE PROGRESS OF THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING AND INFORMATION TECHNOLOGY

The Faculty Head has made a brief presentation to the members of the Board of Studies, highlighting the Academic Progress of the Departments Computer Science and Engineering and Information Technology.

BOS 02. 03 TO CONSIDER AND APPROVE THE CURRICULA AND SYLLABI FROM III TO VIII SEMESTERS OF UG PROGRAMS UNDER THE FACULTY OF COMPUTER SCIENCE AND ENGINEERING AND INFORMATION TECHNOLOGY TO BE OFFERED IN AUTONOMOUS INSTITUTION UNDER R-2021 WITH EFFECT FROM THE ACADEMIC YEAR 2021-2022 ONWARDS.

RESOLVED TO APPROVE the curricula and syllabi from III to VIII semesters for the following UG programmes under the faculty of Computer Science and Engineering and Information Technology to be, offered in the Autonomous Institution under R-2021 with effect from the Academic Year 2021-2022 onwards by incorporating the following suggestions of the Experts.

- i. Rename the subject DS1304 Foundations to Data Science as DS1304 Foundations of Data Science.
- ii. Rearrange the contents of Unit-I and II in the subject CS1403-Database Design and Management (Lab Integrated).

Minutes of the Second Board of Studies

- Reframe the syllabus CS1502 Object Oriented Analysis and Design with reference to the book "Carol Britton, Jill Doake- A Student Guide to Object oriented Development".
- iv. Additional topic- "Google Homes in IoT" to be included in the subject CS1704- Internet of Things.
- v. Professional Elective IT1512 Human Rights may be excluded.

THE APPROVED CURRICULA AND SYLLABI OF THE FACULTY OF COMPUTER SCIENCE AND ENGINEERING AND INFORMATION TECHNOLOGY (UG PROGRAMS R-2021) ARE GIVEN BELOW:

- i. B.E. Computer Science and Engineering
- ii. B.Tech. Artificial Intelligence and Data Science
- iii. B.Tech. Artificial Intelligence and Machine Learning
- iv. B. Tech. Information Technology

BOS 02. 04 Vote of Thanks

The meeting came to end, with the Vote of Thanks proposed by the Faculty Head to all the external and internal members for having spared their time and participated in the Second Board of Studies of Faculty of Computer Science and Engineering and Information Technology, St. Joseph's College of Engineering, Chennai - 119.

